

Construction of a Femtosecond Pump-Probe Spectroscopy for Thermal Diffusivity Measurement of Superconducting Niobium

Jefferson Lab

Md. Mahmudur Rahman, Md Obidul Islam, Ganapati Myneni and Hani E. Elsayed-Ali

Department of Electrical and Computer Engineering and the Applied Research Center, Old Dominion University, Norfolk, Virginia 23529, USA

Abstract

- Superconducting Nb is extensively used in particle accelerator application.
- Thermal diffusivity measurement in the nanoscale heat transfer is critical at sub-zero temperature for Nb.
- Experimental investigation of thermal diffusivity measurement of ingot Nb is demonstrated by femtosecond time-resolved pump-probe spectroscopy.
- An optical pump-probe setup is developed using a Titanium: sapphire (Ti:Al₂O₃) femtosecond laser (wavelength = 800 nm, pulse width 100 fs, repetition rate 80 MHz).

Project goal

- Measurement of thermal diffusivity of ingot and Nb thin film at critical temperature.
- Investigation of nanoscale heat transfer in Nb thin film as a coating material in particle accelerator.

Generation of nonequilibrium electrons $n(E) \qquad \qquad Pump \qquad \qquad Probe \qquad \qquad 1 < 0 \qquad$

- Electrons scatter with other electrons on ~1 femtosecond timescales.
- Atomic vibrate takes place with characteristic times of ~1 picosecond.
- Reflectivity is a linear function of temperature and have the same shape as the temperature profile.

Ti:sapphire femtosecond laser beam is separated into pump and probe beam into 90:10 ratio. The pump is modulated at 1 MHz frequency by acousto-optics-modulator. A lock-in-amplifier is used to detect the thermomodulation in probe signal.

Thermal diffusivity measurement at critical temperature

Thermal diffusivity measurement:

The two-temperature model is a common framework to interpret TTR experiments. The two temperatures refer to T_e the electron temperature and T_l the temperature of the lattice.

$$C_e \frac{\partial T_e}{\partial t} = k_e \frac{\partial^2 T_e}{\partial x^2} - G(T_e - T_l) + S$$

$$S = I(t)A. \alpha. ex p(-\alpha z)$$

$$C_l \frac{\partial T_l}{\partial t} = G(T_e - T_l)$$

- k_e = thermal conductivity (W/m K)
- C_e = electron heat capacity (J/m³ K)
- C_i = lattice heat capacity (J/m³ K)
- T_{ρ} = electron effective temperature (K)
- T_i = lattice effective temperature (K)
- G =electron-phonon coupling coefficient (W/m³K)
- S = source term
- α = the optical penetration depth
- Z = film thickness (m)

AI(x,t) = the absorbed fraction of the incident intensity (Wm⁻²)

APD cryogenics 10 K system

Nonequilibrium heating is investigated for Nb with femtosecond pulsed laser. An optical pump-probe technique is used where an femtosecond laser pulse provides the heating event, and the subsequent change in temperature of the sample surface is measured as a function of time.

References

[1] Md. M. Rahman and H.E. Elsayed-Ali, Review of Scientific Instruments, (2019) (submitted).

[2] H.E. Elsayed-Ali, Physical Review B, 43 (1991) 4488-4491.