Heat Equation

Heat equation governs the temperature distribution in an object. According to the second law of
thermodynamics, if two identical bodies are brought into thermal contact and one is hotter than the
other, then heat must flow from hotter body to the colder one at a rate proportional to the
temperature difference of the two bodies. Therefore, in a metal rod with non-uniform temperature,
heat (thermal energy) is transferred from regions of higher temperature to regions of lower
temperature. Consider a uniform rod of length L with non-uniform temperature lying on the x-axis
from x = 0 to x = L. Assume that the lateral surface of the rod is perfectly insulated, and heat can
enter or leave the rod through either of the rod ends and thereby creating a 1D temperature
distribution.
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Fig. 1: A rectangular metallic rod with insulated lateral surface and nonuniform heat distribution along length.

Consider an arbitrary thin slice of the rod of width Ax, between x and x+ Ax. The slice is so thin
that the temperature throughout the slice is T (X, t). The time heat energy needs to transit through
the tiny slice is At. The Heat (or thermal) energy of a body with uniform properties is defined as:

Qx,t) =cxmXT =c(x) X p(x)AAX X T(X,t) oo esves s e e e e (1)

Where, c(x) is the specific heat of the material, defined as the amount of heat energy that it takes
to raise one unit of mass of the material by one unit of temperature [c(x) > 0]. The specific heat
may not be uniform throughout the bar and in practice the specific heat depends upon the
temperature. However, this will generally only be an issue for large temperature differences. T(x,
t) is body temperature at any point x and any time t, m is the body mass. p(x) is the mass density
which is the mass per unit volume of the material. The mass density may not be uniform throughout
the rod.

Let S(x, t) be the heat energy generated per unit volume at location x, and time t. Then, the total
energy generated inside the thin slice is given by:



AQy = A X AX X S, ) woeer o e s e e e e e e (2)

Now let, @ (x, t) be the heat flux that is the amount of thermal energy that flows to the right per
unit surface area per unit time. The “flows to the right” bit simply tell us that if ¢ (x, t) > 0 for
some x and t then the heat is flowing to the right at that point and time. Likewise, if ¢ (x,t) <O
then the heat will be flowing to the left at that point and time.

According to the law of conservation of energy, the time rate of change of the heat stored at a point
on the rod is equal to the net flow of heat into that point.
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Dividing both sides by A Ax At, equation (3) becomes:
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The above equation contains two unknown functions T and ¢, both of which are function of both
time and space. According to Fourier’s law of heat transfer, rate of heat transfer is proportional to
negative temperature gradient.
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Where k(x) is the thermal conductivity of the material being studied and measures the ability of
the material to conduct heat energy. Thermal conductivity can vary with the location of the rod as
well as the temperature. But for small change in total temperature (less than 10 degree), the thermal
conductivity can be treated as temperature independent. Now applying Fourier law and then
rearranging equation (4) we have,
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Now taking the limit At, Ax — 0 equation (6) becomes:
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Now assume that the material in the rod is uniform in nature and thus the thermal properties
(specific heat and thermal conductivity) and mass density all are constants.

c(x) =c; p(x) =p;and k(x) =k



The heat equation then takes the form:

oT 0°T

The above equation can further be simplified by defining the thermophysical term: thermal
diffusivity to be

k
a=—
cp
The heat equation then takes the form:
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This is 1D form of heat equation. We can get the 2D and 3D version of heat equation by using
Laplacian operator to the first term in right hand side of equation (9)

e eee e (10)

Tow-Temperature Model

The Two Temperature Model (TTM) or Parabolic Two Step (PTS) model is given by:

C(T)2e = = (Ke(Te, T) le) — G(Ty = T)) FSOOE) e (10)
ot = G(Te = T)) oo (11)
Where,

C, : Heat capacity of electrons

G : Heat capacity of lattice

g : Electron-phonon coupling factor
K, : Thermal conductivity
S(x,t) Laser source term, heat energy generated per unit volume per unit time.

The electron-phonon coupling factor and the lattice heat capacity are assumed to be constant. The
electron heat capacity is a strong function of the electron temperature and thermal conductivity is
obtained from electron and lattice temperature and equilibrium electron thermal conductivity
measured at room temperature.

KoL T)) = K e, (13)
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Where, k is the equilibrium electron thermal conductivity measured at room temperature. The laser
source term has an exponential decay in space to account for absorption in a nontransparent media,
and a Gaussian shape in time. Neglecting the temperature dependence of the optical properties a
reasonable approximation of the source term is given as.

SOt = (L= R) L exp [=E = 2.77(5)2] oo (14)
tpd d tp
Where,
R : Reflectivity of the material
J : Laser fluence
d : Radiation penetration depth
ty Pulse width

Here R and a are material properties and J and t,, are laser parameters.

Solution of 1D Heat Equation

According to the law of thermodynamics, the system must undergo a process that brings the metal
rod into thermal equilibrium irrespective to the initial temperature distribution of the rod. The way
in which it proceeds to the thermal equilibrium is uniquely specified by the initial and boundary
conditions. Therefore, the temperature distribution of the body depends on three factors: (i) the
heat equation, which governs the rules for transferring thermal energy from one point to another
within the body, (ii) the initial condition, which defines the initial temperature distribution of the
body and (iii) the boundary conditions, which describe the effects of temperature and/or heat flux
at the boundaries of the metallic rod. The heat equation involves a first order time derivative and
a second order spatial derivative. The first order time derivative indicates that, the solution needs
one initial condition, and the second order spatial derivative indicates that, the solution needs two
boundary conditions.

The initial condition is the initial temperature which is constant for uniform metallic rod and
usually set to the room temperature (300 K) is given

T(2,0) = To() = T ers e eve eee ereees e eee ere ees e eee are s e e eee eee e (11)

Boundary conditions specified the temperature and/or heat flux at both ends of the metal rod. The
most common boundary conditions are described below:

I. Dirichlet Conditions: These are also called prescribed temperature boundary
conditions. The inhomogeneous Dirichlet conditions are given by
T(0,t) =T.(t); T(L,t) = Tr(t) e v vve vee vr v e v e 12,100



If the temperature on both ends of the metal rod are constant and equal, then the
boundary conditions are called homogeneous Dirichlet conditions and is given by:
T(0,t) = T(L,t) =0 e cev e ee e v v ee e . 12,100

ii. Neumann Conditions: These conditions are also called prescribed heat flux conditions
and are given by:

oT aT
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If either of the boundaries are perfectly insulated, then there is no heat flow out of them.
Then Neumann Boundary condition is then referred to as the thermal-insulation
boundary conditions and is given by:

oT
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iii. Robins Conditions: These boundary conditions usually used when the metallic rod is
in a moving fluid and utilize Newton’s law of cooling. Robins conditions are described
by the following equations:

oT oT
—k(O)a(O,t) = H[T(0,t) — g, (®)]; —k(L)a(L, t) = H[T(L,t) — gr(®)] ... .. ... 12.3

Where, H is a positive quantity that can be experimentally determined g, (t) and gz (t)
give the temperature of the surrounding fluid at the two boundaries.

iv. Periodic Boundary Conditions: Periodic boundary conditions are used when a system
of equations has to solve in infinite domain and can be given for the metallic rod studied
here by:

oT oT
T(-L) =T o= (1) = oo (L) e (12.4)

In this study the homogenous Dirichlet boundary condition will be used to solve the heat equation
without including source term and thermally insulated Neumann conditions will be used for
solving 1D heat equation with a source term involved. Both analytical and numerical solution will
be attempted.



Analytical Solution of 1D heat Equation using Homogenous
Dirichlet Boundary Condition
PDE can be solved using separation of variable technique if it is linear and homogenous. The
solution involves 3 steps. (i) convert the PDE into two separate ODEs, (ii) solve the two ODEs
and (iii) compose the solutions to the two ODEs into a solution of the original PDE. Temperature

as function of two variables can be written as product of two separate functions, each of one
variable.
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The heat equation then becomes:
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For simplicity, the value of K is assumed to be unity. The constant may be positive, zero or
negative.

Case-I: Positive constant = A2

1dG B 1d?*F o
Gdt Fdx?
Then,
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G = Ae?’t F = B cosh(1x) + C sinh(1x)




Combining the two solutions we have,

T = FG = Ae**t[B cosh(Ax) + € SIth(AX)] cvv cve e ces e e v e e e (4)

This implies that, when t — 0o, T — oo; then either A = 0,or B=C = 0. But T = 0, does not
apply to all cases. So, we cannot take positive constant.

Case-l1: Constant=0

1dG_1d2F_
Gdt Fdx?
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—=90 —— =0
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Or, Or,
G=A4A F=Bx+C

Combining the two solutions we have,
T = A(BX 4 C) covcoe cevee eve s ere e ene v ane e ene vt ene venene ron ee een e v ene e (D)

Applying the first boundary condition, at x = 0,7 = A + C # 0; which violate the first boundary
condition. Therefore, we can not take the constant as zero.

Case-111: Negative constant = - A2

1dG _ 1d%F
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T +GA* = % + A2F =
Or, Or,
G = Ae ¥t F = B cos(Ax) + C sin(Ax)

Combining the two solutions we have,

T = FG = Ae "![B cos(Ax) + C sin(1x)]



Or,
T = e~ 71[C; cos(Ax) + Cy SIAX)] e vee eee eee v e e e o (6)
To determine the three unknowns (C;, C,, 1) we have to apply boundary conditions.
At,x=0T=0
Cie™t =0
But the exponential term cannot be zero. Therefore, C; = 0
Now the solution becomes:
T ¢/ 9 RN ¢/

Atx=LT=0

0 = C,e~*tsin(Ax)
ButC, # 0 and e ¥t # 0
Then we have, sin(AL) = 0 = sin(nm)
Or, AL = nn

Or, A = Z: where, n is an integer number.
L
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Forn=1,4 = %;n =21, = Tn; e TEN A, = nL—n
The solution takes the form
T(x, t) = T1 + T2 + T3 + . TN
— o2t (T A3t i (2 ) ~At gip (M
T(x,t) =Che ™ 51n(Lx)+Cze 2 sm(L X))+ +Ce™ sm(L x) +
T(x,t) = Coe Mt sin(A,x) + Cre 23 Sin(Ayx) + - vve vre e +Cpe 20t sin(A,x) + -
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According to the initial condition, when t = 0, T (x,t) = @(x)
Then, ¢(x) = Y0 a, sin(1,x)
Multiplying both sides by sin(4,,x)

@ (x) sin(4,,x) = sin(4,,x) Z a, sin(4,x)
n=1



Now integrate both sides with respectto x fromx =0tox = L

L L'
@ (x) sin(A,,x) dx = a, sin(4,,x) sin(1,,x) dx
fo Z —l;)

L
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0

0

L a, (t a
f @(x) sin(A,x) dx = Tn_f (1 —cos2A,x)dx = 771 (L—-0)
0 0

a, = %j:(p(x) SIN(A[X) dX e e e e e e et e et e e e e a2 (9)

For constant initial condition ¢(x) =T,

Then, a,, = ZLﬂfoL sin(4,x) dx

Finally, the solution is obtained as:

T(x,t) = z a, et sin(,x)
n=1

2T, (*
a, = Toj sin(4,x) dx
0
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MATLAB Code:
clc
clear
% Putting Constant Values
L=50; % Thickness of metal sample is 10 unit
tend= 100; % Diffusion upto 100 unit
Tnot=300; % Initial temperature of the metal rod

n=10; % Maximum integer value




p=0; % Lower limit

g=L; % Upper limit

%Mesh spacing and time steps
nx=100;
nt=100;

%Mesh spacing and time steps
dx= L/(nx-1);
dt=tend/(nt-1);

% Creating arrays to save data
y= linspace (0, L, nx);

t= linspace (0, tend, nt);

% Memory preallocation

T=zeros(nx, nt);

for i=1:nt
ti=(dt*i)-dt;

for j=1:nx

xj=(dx*j)-dx;

newsum=0.0;

for k=1:n
Lamda=(k*pi)/L;
syms X ;
f=sin(Lamda*x);
A=int(f, p, q);
a= ((2*Tnot)/L)*A;



b=sin(Lamda*xj);

c=exp(-(Lamda*Lamda*ti));

Tprod=a*b*c;

newsum=newsum-+Tprod;
end

T(i, j)=newsum;

end

end

% Plotting temperature profile as a function of time
plot(t,T(:, 2),'r",'linewidth’, 3)
axis([-10 110 -10 70]);
title('Analytical Solution of 1D Heat equation ','fontweight’, 'bold’,'FontSize’,12)
xlabel('Time','fontweight’,'bold’,'FontSize',12)
ylabel('Temperature','fontweight’, 'bold','FontSize’,12)

% Plotting temperature profile as a function of Distance
plot(y,T(20, :),'r','linewidth’, 3)
axis([-5 55 -50 350]);
title('Analytical Solution of 1D Heat equation ','fontweight’, 'bold’,'FontSize’,12)
xlabel('Distance’,' fontweight','bold','FontSize',12)
ylabel('Temperature','fontweight’, 'bold','FontSize',12)



% A surface plot is often a good way to study a solution.

surf(y,t, T)

title('Analytical Solution of 1D Heat equation','fontweight’, 'bold','FontSize',12)

xlabel('Distance x','fontweight’, 'bold','FontSize',12)

ylabel('Time t','fontweight’, 'bold','FontSize’,12)

zlabel('Temperature T','fontweight’, 'bold','FontSize',12)
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