
Heat Equation 

 

Heat equation governs the temperature distribution in an object. According to the second law of 

thermodynamics, if two identical bodies are brought into thermal contact and one is hotter than the 

other, then heat must flow from hotter body to the colder one at a rate proportional to the 

temperature difference of the two bodies. Therefore, in a metal rod with non-uniform temperature, 

heat (thermal energy) is transferred from regions of higher temperature to regions of lower 

temperature. Consider a uniform rod of length L with non-uniform temperature lying on the x-axis 

from x = 0 to x = L. Assume that the lateral surface of the rod is perfectly insulated, and heat can 

enter or leave the rod through either of the rod ends and thereby creating a 1D temperature 

distribution.  

 

Fig. 1: A rectangular metallic rod with insulated lateral surface and nonuniform heat distribution along length. 

 

Consider an arbitrary thin slice of the rod of width Δx, between x and x+ Δx. The slice is so thin 

that the temperature throughout the slice is T (x, t). The time heat energy needs to transit through 

the tiny slice is Δt. The Heat (or thermal) energy of a body with uniform properties is defined as:  

𝑄(𝑥, 𝑡) = 𝑐 × 𝑚 × 𝑇 = 𝑐(𝑥) × 𝜌(𝑥)𝐴∆𝑥 × 𝑇(𝑥, 𝑡) …………………… ..  (1) 

Where, c(x) is the specific heat of the material, defined as the amount of heat energy that it takes 

to raise one unit of mass of the material by one unit of temperature [c(x) > 0]. The specific heat 

may not be uniform throughout the bar and in practice the specific heat depends upon the 

temperature. However, this will generally only be an issue for large temperature differences. T(x, 

t) is body temperature at any point x and any time t, m is the body mass. ρ(x) is the mass density 

which is the mass per unit volume of the material. The mass density may not be uniform throughout 

the rod.  

Let 𝑆(𝑥, 𝑡) be the heat energy generated per unit volume at location x, and time t. Then, the total 

energy generated inside the thin slice is given by: 



∆𝑄𝑔 = 𝐴 × ∆𝑥 × 𝑆(𝑥, 𝑡) …………………………… ……(2) 

Now let, Φ (x, t) be the heat flux that is the amount of thermal energy that flows to the right per 

unit surface area per unit time. The “flows to the right” bit simply tell us that if ϕ (x, t) > 0 for 

some x and t then the heat is flowing to the right at that point and time. Likewise, if ϕ (x, t) < 0 

then the heat will be flowing to the left at that point and time.  

According to the law of conservation of energy, the time rate of change of the heat stored at a point 

on the rod is equal to the net flow of heat into that point.  
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𝑐(𝑥) 𝜌(𝑥) 𝐴 ∆𝑥[𝑇(𝑥, 𝑡 + ∆𝑡) − 𝑇(𝑥, 𝑡)] + 𝐴 ∆𝑥 𝑆(𝑥, 𝑡) ∆𝑡
= 𝐴 ∆𝑡 𝜑(𝑥, 𝑡) − 𝐴 ∆𝑡 𝜑(𝑥 + ∆𝑥, 𝑡) ……………………… …  (3) 

Dividing both sides by  𝐴 ∆𝑥 ∆𝑡, equation (3) becomes: 

𝑐(𝑥) 𝜌(𝑥)[
𝑇(𝑥,𝑡+∆𝑡)−𝑇(𝑥,𝑡)

∆𝑡
] + 𝑆(𝑥, 𝑡) = [

𝜑(𝑥,𝑡)−𝜑(𝑥+∆𝑥,𝑡)

∆𝑥
]…… ……………… . . (4)      

The above equation contains two unknown functions T and 𝜑, both of which are function of both 

time and space. According to Fourier’s law of heat transfer, rate of heat transfer is proportional to 

negative temperature gradient.   

𝜑(𝑥, 𝑡) = −𝑘(𝑥)
𝝏𝑻

𝝏𝒙
………… …………………………… …………………(5) 

Where 𝑘(𝑥)  is the thermal conductivity of the material being studied and measures the ability of 

the material to conduct heat energy. Thermal conductivity can vary with the location of the rod as 

well as the temperature. But for small change in total temperature (less than 10 degree), the thermal 

conductivity can be treated as temperature independent. Now applying Fourier law and then 

rearranging equation (4) we have, 

𝑐(𝑥)𝜌(𝑥)
𝑇(𝑥,𝑡+∆𝑡)−𝑇(𝑥,𝑡)

∆𝑡
= 𝑘(𝑥) [

(
𝜕𝑇

𝜕𝑥
)
𝑥+∆𝑥

−(
𝜕𝑇

𝜕𝑥
)
𝑥

∆𝑥
] + 𝑆(𝑥, 𝑡)    ……………………………. (6) 

Now taking the limit Δt, Δx → 0 equation (6) becomes:  

𝑐(𝑥)𝜌(𝑥)
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
[𝑘(𝑥)

𝜕𝑇

𝜕𝑥
] + 𝑆(𝑥, 𝑡) …………………………… ………  (7) 

Now assume that the material in the rod is uniform in nature and thus the thermal properties 

(specific heat and thermal conductivity) and mass density all are constants. 

𝑐(𝑥) = 𝑐;  𝜌(𝑥) = 𝜌; 𝑎𝑛𝑑 𝑘(𝑥) = 𝑘  



The heat equation then takes the form: 

𝑐𝜌
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
 + 𝑆(𝑥, 𝑡)………………… ………………………… … . (8) 

The above equation can further be simplified by defining the thermophysical term: thermal 

diffusivity to be 

𝛼 =
𝑘

𝑐𝜌
 

The heat equation then takes the form: 

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
 +

𝑆(𝑥, 𝑡)

𝑐𝜌
………… ………………………… ………… . (9) 

This is 1D form of heat equation. We can get the 2D and 3D version of heat equation by using 

Laplacian operator to the first term in right hand side of equation (9) 

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 +

𝑆(𝑥, 𝑡)

𝑐𝜌
…………………… ………………………… . (10) 

Tow-Temperature Model 

The Two Temperature Model (TTM) or Parabolic Two Step (PTS) model is given by: 

𝐶𝑒(𝑇𝑒)
𝜕𝑇𝑒

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝐾𝑒(𝑇𝑒, 𝑇𝑙)

𝜕𝑇𝑒

𝜕𝑥
) − 𝑔(𝑇𝑒 − 𝑇𝑙) + 𝑆(𝑥, 𝑡) …………………………………… (10) 

𝐶𝑙
𝜕𝑇𝑙

𝜕𝑡
=  𝑔(𝑇𝑒 − 𝑇𝑙) …………………………………………………………………………. (11) 

Where, 

𝐶𝑒 : Heat capacity of electrons 

𝐶𝑙 : Heat capacity of lattice 

g : Electron-phonon coupling factor 

𝐾𝑒 : Thermal conductivity 

𝑆(𝑥, 𝑡) : Laser source term, heat energy generated per unit volume per unit time. 

 

The electron-phonon coupling factor and the lattice heat capacity are assumed to be constant. The 

electron heat capacity is a strong function of the electron temperature and thermal conductivity is 

obtained from electron and lattice temperature and equilibrium electron thermal conductivity 

measured at room temperature. 

𝐶𝑒 = 𝐶𝑒
⋰𝑇𝑒 …………………………………………………………………………………… (12) 

𝐾𝑒(𝑇𝑒 , 𝑇𝑙) = 𝑘
𝑇𝑒

𝑇𝑙
 …………………………………………………………………………….. (13) 



Where, k is the equilibrium electron thermal conductivity measured at room temperature. The laser 

source term has an exponential decay in space to account for absorption in a nontransparent media, 

and a Gaussian shape in time. Neglecting the temperature dependence of the optical properties a 

reasonable approximation of the source term is given as. 

𝑆(𝑥, 𝑡) = (1 − 𝑅)
𝐽

𝑡𝑝𝑑
∗ exp [−

𝑥

𝑑
− 2.77(

𝑡

𝑡𝑝
)2] ………………………………………………(14) 

 

Where, 

R : Reflectivity of the material  

J : Laser fluence  

𝑑 : Radiation penetration depth  

𝑡𝑝 : Pulse width  

Here R and α are material properties and J and 𝑡𝑝 are laser parameters. 

 

Solution of 1D Heat Equation 

According to the law of thermodynamics, the system must undergo a process that brings the metal 

rod into thermal equilibrium irrespective to the initial temperature distribution of the rod. The way 

in which it proceeds to the thermal equilibrium is uniquely specified by the initial and boundary 

conditions. Therefore, the temperature distribution of the body depends on three factors: (i) the 

heat equation, which governs the rules for transferring thermal energy from one point to another 

within the body, (ii) the initial condition, which defines the initial temperature distribution of the 

body and (iii) the boundary conditions, which describe the effects of temperature and/or heat flux 

at the boundaries of the metallic rod. The heat equation involves a first order time derivative and 

a second order spatial derivative. The first order time derivative indicates that, the solution needs 

one initial condition, and the second order spatial derivative indicates that, the solution needs two 

boundary conditions. 

The initial condition is the initial temperature which is constant for uniform metallic rod and 

usually set to the room temperature (300 K) is given 

𝑇(𝑥, 0) = 𝑇0(𝑥) = 𝑇0 ………… …………………………… ……………(11) 

Boundary conditions specified the temperature and/or heat flux at both ends of the metal rod. The 

most common boundary conditions are described below: 

i. Dirichlet Conditions: These are also called prescribed temperature boundary 

conditions. The inhomogeneous Dirichlet conditions are given by 

𝑇(0, 𝑡) = 𝑇𝐿(𝑡);  𝑇(𝐿, 𝑡) = 𝑇𝑅(𝑡)…………………… …… . 12.1. 𝑎  

 



If the temperature on both ends of the metal rod are constant and equal, then the 

boundary conditions are called homogeneous Dirichlet conditions and is given by: 

𝑇(0, 𝑡) =  𝑇(𝐿, 𝑡) = 0………… ……………… . 12.1. 𝑏  

ii. Neumann Conditions: These conditions are also called prescribed heat flux conditions 

and are given by: 

−𝑘(0)
𝜕𝑇

𝜕𝑥
(0, 𝑡) = 𝜑𝐿(𝑡);     −𝑘(𝐿)

𝜕𝑇

𝜕𝑥
(𝐿, 𝑡) = 𝜑𝑅(𝑡)……………… ………12.2. 𝑎 

 

If either of the boundaries are perfectly insulated, then there is no heat flow out of them. 

Then Neumann Boundary condition is then referred to as the thermal-insulation 

boundary conditions and is given by: 

𝜕𝑇

𝜕𝑥
(0, 𝑡) =

𝜕𝑇

𝜕𝑥
(𝐿, 𝑡) = 0 ………………………12.2. 𝑎 

 

iii. Robins Conditions: These boundary conditions usually used when the metallic rod is 

in a moving fluid and utilize Newton’s law of cooling. Robins conditions are described 

by the following equations: 

−𝑘(0)
𝜕𝑇

𝜕𝑥
(0, 𝑡) = 𝐻[𝑇(0, 𝑡) − 𝑔𝐿(𝑡)];      −𝑘(𝐿)

𝜕𝑇

𝜕𝑥
(𝐿, 𝑡) = 𝐻[𝑇(𝐿, 𝑡) − 𝑔𝑅(𝑡)] ………  12.3 

Where, H is a positive quantity that can be experimentally determined 𝑔𝐿(𝑡) and 𝑔𝑅(𝑡) 

give the temperature of the surrounding fluid at the two boundaries.  

iv. Periodic Boundary Conditions: Periodic boundary conditions are used when a system 

of equations has to solve in infinite domain and can be given for the metallic rod studied 

here by:  

𝑇(−𝐿, 𝑡) = 𝑇(𝐿, 𝑡);      
𝜕𝑇

𝜕𝑥
(−𝐿, 𝑡) =

𝜕𝑇

𝜕𝑥
(𝐿, 𝑡) ………………… …………………(12.4) 

In this study the homogenous Dirichlet boundary condition will be used to solve the heat equation 

without including source term and thermally insulated Neumann conditions will be used for 

solving 1D heat equation with a source term involved. Both analytical and numerical solution will 

be attempted.  

 

 

 

 

 

 



 

 

Analytical Solution of 1D heat Equation for Two Temperature 

Model (TTM) using Thermal-insulation Boundary Condition 

The assumptions made during analytical solution of heat equations are: laser source term is 

instantaneous and the thermophysical properties are constant. The PDEs are nonlinear due to the 

strong temperature dependence of electron heat capacity and thermal conductivity. The assumption 

of constant thermophysical properties makes the equations linear. For low level of laser fluence 

and laser pulse duration less than thermalization time this solution provides a very good 

approximation of experimental TDTR scan and brings up the nonequilibrium effects of laser 

heating when the electron and lattice systems reached in thermal equilibrium. This solution cannot 

resemble electron temperature properly as the temperature dependence of electron heat capacity is 

ignored.  

Assuming constant thermophysical properties equations 10 and 11 can be combined and 

eliminated the electron temperature. 

(𝐶𝑒 + 𝐶𝑙)
𝜕𝑇𝑙

𝜕𝑡
+

𝐶𝑒𝐶𝑙

𝑔

𝜕2𝑇𝑙

𝜕𝑡2
= 𝑘

𝜕2𝑇𝑙

𝜕𝑥2
+

𝐶𝑙

𝑔
𝑘

𝜕2

𝜕𝑥2
(
𝜕𝑇𝑙

𝜕𝑡
) + 𝑆(𝑥, 𝑡) 

𝐶
𝜕𝑇𝑙

𝜕𝑡
+ 𝑣

𝜕2𝑇𝑙

𝜕𝑡2
= 𝑘

𝜕2𝑇𝑙

𝜕𝑥2
+ µ𝑘

𝜕2

𝜕𝑥2
(
𝜕𝑇𝑙

𝜕𝑡
) + 𝑆(𝑥, 𝑡)……………………… ……………………(15) 

Where, 𝐶 = 𝐶𝑒 + 𝐶𝑙; 𝑣 =
𝐶𝑒𝐶𝑙

𝑔
; 𝑎𝑛𝑑 µ =

𝐶𝑙

𝑔
  

Applying the law of energy conservation, the laser source term can be rewritten by integrating the 

Gaussian source term over time and multiplied by delta function. 

𝑆 = (1 − 𝑅)
𝐽

𝑑
exp (−

𝑥

𝑑
)𝛿(𝑡)……… …………………………… ……………………… . . (16) 

The deposition of energy from the laser source and absorption by electrons are instantaneous 

events. Therefore, the electron temperature distribution can be obtained by neglecting the diffusion 

and electron-phonon coupling term from equation 10. 

𝐶𝑒

𝜕𝑇𝑒

𝜕𝑡
=  𝑆 

The electron temperature distribution then can be achieved by integrating the equation just after 

arrival of the heating pulse.  

∫ 𝐶𝑒

𝜕𝑇𝑒

𝜕𝑡

0+

0−

𝑑𝑡 = ∫ 𝑆
0+

0−

𝑑𝑡 



∫ 𝐶𝑒

𝜕𝑇𝑒

𝜕𝑡

0+

0−

𝑑𝑡 = ∫ (1 − 𝑅)
𝐽

𝑑
exp (−

𝑥

𝑑
)𝛿(𝑡)

0+

0−

𝑑𝑡 

𝑇𝑒(𝑥, 0+ ) =
(1 − 𝑅)𝐽

𝑑𝐶𝑒
exp (−

𝑥

𝑑
)…………… ………………………… …………………(17) 

The initial condition is the initial temperature which is set to the room temperature. For simplicity 

we can assume the initial lattice temperature is zero and the first initial condition is given by. 

𝑇𝑙(𝑥, 0+ ) = 𝑇𝑙(𝑥, 0− ) = 0 …………………… …………………………… …… . . (18𝑎) 

From equation 11 we have  

𝐶𝑙

𝜕𝑇𝑙(𝑥, 0+)

𝜕𝑡
=  𝑔𝑇𝑒(𝑥, 0+ ) 

The second initial condition can be found by substituting for 𝑇𝑒(𝑥, 0+ ) from equation 17. 

𝜕𝑇𝑙

𝜕𝑡
(𝑥, 0+) =

𝑔(1 − 𝑅)𝐽

𝑑𝐶𝑒𝐶𝑙
exp (−

𝑥

𝑑
)  

𝜕𝑇𝑙

𝜕𝑡
(𝑥, 0+) =

(1 − 𝑅)𝐽

𝑣𝑑
exp (−

𝑥

𝑑
)……………… …………………………… ……………… . . (18𝑏) 

During the short period of laser heating, heat losses from the front and back surfaces of the film 

can be neglected, leading to the thermal-insulation boundary conditions: 

𝜕𝑇𝑙

𝜕𝑥
(0 , 𝑡) =

𝜕𝑇𝑙

𝜕𝑥
(𝐿 , 𝑡) = 0 ……………… …………………………… ………… . . … (19) 

Where L is the film thickness. The PDE in equation 15 along with initial conditions (equation 18) 

and thermal insulated boundary conditions (equation 19) can be solved using the method of 

separation of variables. The solution involves 3 steps. (i) convert the PDE into two separate ODEs, 

(ii) solve the two ODEs and (iii) compose the solutions to the two ODEs into a solution of the 

original PDE. Temperature as function of two variables can be written as product of two separate 

functions, each of one variable. 

𝑇(𝑥, 𝑡) = 𝐹(𝑥) . 𝐺(𝑡)………………………… …………………………… …………………….  (20) 

The equation 15 then can be written as follows by putting lattice temperature as product of two 

separate functions F and G. For simplicity the value of S is assumed to be zero.  

𝐶𝐹
𝑑𝐺

𝑑𝑡
+ 𝑣𝐹

𝑑2𝐺

𝑑𝑡2
= 𝑘𝐺

𝑑2𝐹

𝑑𝑥2
+ µ𝑘

𝜕2

𝜕𝑥2
(𝐹

𝑑𝐺

𝑑𝑡
) 

𝐶𝐹
𝑑𝐺

𝑑𝑡
+ 𝑣𝐹

𝑑2𝐺

𝑑𝑡2
= 𝑘𝐺

𝑑2𝐹

𝑑𝑥2
+ µ𝑘

𝑑𝐺

𝑑𝑡

𝑑2𝐹

𝑑𝑥2
 

𝐹(𝐶
𝑑𝐺

𝑑𝑡
+ 𝑣

𝑑2𝐺

𝑑𝑡2
) =

𝑑2𝐹

𝑑𝑥2
(𝑘𝐺 + µ𝑘

𝑑𝐺

𝑑𝑡
) 



1

𝐹

𝑑2𝐹

𝑑𝑥2
=

1

(𝑘𝐺 + µ𝑘
𝑑𝐺
𝑑𝑡

)
(𝐶

𝑑𝐺

𝑑𝑡
+ 𝑣

𝑑2𝐺

𝑑𝑡2
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

The constant can be positive, zero or negative but from the previous calculations we saw that 

taking constant value positive or zero violate the boundary condition or cannot validate the 

equation for all time instants. Therefore, let the constant be −𝜆. Then solving for two part we get 

two equations of which one is time dependent and the other is time independent.  

1

𝐹

𝑑2𝐹

𝑑𝑥2
= −𝜆 

 

𝑑2𝐹

𝑑𝑥2
+ 𝜆𝐹 = 0 ……………… …………………………… …………… . (21𝑎) 

1

(𝑘𝐺 + µ𝑘
𝑑𝐺
𝑑𝑡

)
(𝐶

𝑑𝐺

𝑑𝑡
+ 𝑣

𝑑2𝐺

𝑑𝑡2
) = −𝜆 

𝑣
𝑑2𝐺

𝑑𝑡2
+ (𝐶 + 𝜆µ𝑘)

𝑑𝐺

𝑑𝑡
+ 𝜆𝑘𝐺 = 0………… …………………………… ………  (21𝑏) 

The solution of equation 21a is given by: 

𝐹 = 𝐴𝑐𝑜𝑠 (𝜆
1
2𝑥) + 𝐵𝑠𝑖𝑛 (𝜆

1
2𝑥)…………………………… ………… . . (22) 

Differentiating equation 22 with respect to x we get 

𝑑𝐹

𝑑𝑥
= −𝜆

1
2𝐴 𝑠𝑖𝑛 (𝜆

1
2𝑥) + 𝜆

1
2𝐵 𝑐𝑜𝑠 (𝜆

1
2𝑥)………… ………………………… . . (23) 

Applying boundary condition at the front surface (x=0) 

𝑑𝐹

𝑑𝑥
(𝑥 = 0) = 0 = −𝜆

1
2𝐴 𝑠𝑖𝑛(0) + 𝜆

1
2𝐵 𝑐𝑜𝑠(0) 

𝜆
1
2𝐵 = 0 

But 𝜆 is constant and must not be zero. Therefore 𝐵 = 0. 

Then we have  

𝐹 = 𝐴𝑐𝑜𝑠 (𝜆
1
2𝑥)…… ………………………… …… . (24) 

Applying boundary condition at the back surface (x=L) 

𝑑𝐹

𝑑𝑥
(𝑥 = 𝐿) = 0 = −𝜆

1
2𝐴 𝑠𝑖𝑛 (𝜆

1
2𝐿) 



𝑠𝑖𝑛 (𝜆
1
2𝐿) = sin (𝑗𝜋) 

𝜆𝑗 = (
𝑗𝜋

𝐿
)2 

Where j = 0, 1, 2, ……………… 

The equation 24 then can be written as: 

𝐹(𝑥) = 𝐴𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) 

𝐹(𝑥) = 𝐴0𝑐𝑜𝑠(0) + 𝐴1 cos (
𝜋

𝐿
𝑥) + 𝐴2 cos (

2𝜋

𝐿
𝑥) + ⋯…………… 

𝐹(𝑥) = 𝐴0 + ∑𝐴𝑗

∞

𝑗=1

𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) ………… …………………………… ………(25) 

The solution of equation 21b is given by, 

𝐺(𝑡) = 𝐵1𝑒
𝑚1𝑡 + 𝐵2𝑒

𝑚2𝑡 … …………………………… ………………(26) 

Where, 𝑚1 =
−(𝐶+𝜆𝑗𝜇𝑘)+√(𝐶+𝜆𝑗𝜇𝑘)

2
−4𝜆𝑗𝑣𝑘

2𝑣
 and 𝑚2 =

−(𝐶+𝜆𝑗𝜇𝑘)−√(𝐶+𝜆𝑗𝜇𝑘)
2
−4𝜆𝑗𝑣𝑘

2𝑣
 

Applying the first initial condition we have  

𝐺(𝑡 = 0) = 0 = 𝐵1 + 𝐵2 

Or, 𝐵2 = −𝐵1 

Then the equation 26 becomes: 

𝐺(𝑡) = 𝐵1(𝑒
𝑚1𝑡 − 𝑒𝑚2𝑡)…………………… ………………………… (27) 

For 𝑗 = 0;  𝑚1 = 0 𝑎𝑛𝑑 𝑚2 = −
𝐶

𝑣
 

Equation 27 then can be rewritten as: 

𝐺(𝑡) = 𝐵0 (1 − 𝑒−
𝐶𝑡
𝑣 ) + ∑ 𝐵𝑗

∞

𝑗=1

(𝑒𝑚1𝑡 − 𝑒𝑚2𝑡)…… …………………………… ……………(28) 

The general solution for the lattice temperature is then obtained by multiplying equations 25 and 

28. 

𝑇𝑙(𝑥, 𝑡) = 𝐷0 (1 − 𝑒−
𝐶𝑡
𝑣 ) + ∑𝐷𝑗

∞

𝑗=1

(𝑒𝑚1𝑡 − 𝑒𝑚2𝑡)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) ……………………   (29) 

The electron temperature distribution can be obtained from equation 11 



𝑇𝑒(𝑥, 𝑡) =
𝐶𝑙

𝑔

𝜕𝑇𝑙(𝑥, 𝑡)

𝜕𝑡
+ 𝑇𝑙(𝑥, 𝑡)… ………………………… …………………………… …   (30) 

Differentiating equation 29 with respect to time we have  

𝜕𝑇𝑙(𝑥, 𝑡)

𝜕𝑡
=

𝐷0𝐶

𝑣
𝑒−

𝐶𝑡
𝑣 + ∑𝐷𝑗

∞

𝑗=1

(𝑚1𝑒
𝑚1𝑡 − 𝑚2𝑒

𝑚2𝑡)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥)…………………… . . (31) 

Combining equation 29, 30 and 31 we get the equation for electron temperature 

𝑇𝑒(𝑥, 𝑡) =
𝜇𝐷0𝐶

𝑣
𝑒−

𝐶𝑡
𝑣 + 𝜇 ∑ 𝐷𝑗

∞

𝑗=1

(𝑚1𝑒
𝑚1𝑡 − 𝑚2𝑒

𝑚2𝑡)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) + 𝑇𝑙(𝑥, 𝑡)…………… … . (32) 

Using equation 18b (second initial condition) and equation 31 we have 

𝜕𝑇𝑙(𝑥, 0)

𝜕𝑡
=

𝐷0𝐶

𝑣
+ ∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) =

(1 − 𝑅)𝐽

𝑣𝑑
exp (−

𝑥

𝑑
) 

Taking integration on both sides from 0 to L we have  

∫
𝐷0𝐶

𝑣
𝑑𝑥

𝐿

0

+ ∫∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) 𝑑𝑥 =  ∫

(1 − 𝑅)𝐽

𝑣𝑑
exp (−

𝑥

𝑑
)𝑑𝑥

𝐿

0

…… . (33)

𝐿

0

 

𝐷0𝐶

𝑣
[𝐿 − 0] + ∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)
𝐿

𝑗𝜋
[sin(𝑗𝜋) − sin(0)] =

(1 − 𝑅)𝐽

𝑣𝑑
(−𝑑)[exp (−

𝐿

𝑑
) − exp (0)] 

Since j is an integer sin(𝑗𝜋) = 0, then we have 

 
𝐷0𝐶𝐿

𝑣
+ 0 =

(1−𝑅)𝐽

𝑣
[1 − exp (−

𝐿

𝑑
)] 

Or,  

𝐷0 =
(1 − 𝑅)𝐽

𝐿𝐶
(1 − 𝑒−𝐿

𝑑)……………………………. . (34) 

Now to determine the coefficient 𝐷𝑗 multiply both sides of equation 33 by 𝑐𝑜𝑠 (
𝑙𝜋

𝐿
𝑥) we can write 

∫
𝐷0𝐶

𝑣
𝑐𝑜𝑠 (

𝑙𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0

+ ∫∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) 𝑐𝑜𝑠 (

𝑙𝜋

𝐿
𝑥) 𝑑𝑥 =  ∫

(1 − 𝑅)𝐽

𝑣𝑑
exp (−

𝑥

𝑑
) 𝑐𝑜𝑠 (

𝑙𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0

𝐿

0

 

This equation has three integrals are evaluated separately. Let’s the integrals are 𝐼1, 𝐼2, 𝑎𝑛𝑑 𝐼3 

𝐼1 + 𝐼2 = 𝐼3 … …… ……… …(35) 



Where, 𝐼1 = ∫
𝐷0𝐶

𝑣
𝑐𝑜𝑠 (

𝑙𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0
… …… …… … . . (36𝑎) 

𝐼2 = ∫∑ 𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) 𝑐𝑜𝑠 (

𝑙𝜋

𝐿
𝑥) 𝑑𝑥 ……… …… ……… …… …… ……… (36𝑏)

𝐿

0

 

𝐼3 = ∫
(1 − 𝑅)𝐽

𝑣𝑑
exp (−

𝑥

𝑑
) 𝑐𝑜𝑠 (

𝑙𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0

……… …… …… ……… …… ……… …… …… (36𝑐) 

From equation 36a 

𝐼1 =
𝐷0𝐶

𝑣
[sin(𝑙𝜋) − sin(0)]

𝐿

𝑙𝜋
 

Since l is an integer sin(𝑙𝜋) = 0, then we have 

𝐼1 = 0 

In equation 36b, the integrand is a product of two even functions which are mutually orthogonal. 

To determine the integral, we need to consider two cases (since the integer j ranges from zero to 

infinitive): 𝑗 = 𝑙 𝑎𝑛𝑑 𝑗 ≠ 𝑙. 

For 𝑗 = 𝑙 

𝐼2 = ∫∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)𝑐𝑜𝑠
2 (

𝑗𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0

 

𝐼2 =
1

2
∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)∫(1 + 𝑐𝑜𝑠 (
2𝑗𝜋

𝐿
𝑥))𝑑𝑥

𝐿

0

 

𝐼2 =
1

2
∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2) [(𝐿 +
𝐿

2𝑗𝜋
sin(2𝑗𝜋)) − (0 +

𝐿

2𝑗𝜋
sin(0))] 

Since j is an integer sin(2𝑗𝜋) = 0, then we have 

𝐼2 =
1

2
∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)𝐿…… ……… …… …… . (37𝑎) 

Now for 𝑗 ≠ 𝑙 

𝐼2 = ∫∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) 𝑐𝑜𝑠 (

𝑙𝜋

𝐿
𝑥) 𝑑𝑥 

𝐿

0

 

𝐼2 = ∑ 𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)
1

2
∫2𝑐𝑜𝑠 (

𝑗𝜋

𝐿
𝑥) 𝑐𝑜𝑠 (

𝑙𝜋

𝐿
𝑥) 𝑑𝑥 

𝐿

0

 



𝐼2 = ∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)
1

2
∫ 𝑐𝑜𝑠 (

(𝑗 − 𝑙)𝜋

𝐿
𝑥) + 𝑐𝑜𝑠 (

(𝑗 + 𝑙)𝜋

𝐿
𝑥) 𝑑𝑥 

𝐿

0

 

𝐼2 = ∑𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)
1

2
 [(

𝐿

(𝑗 − 𝑙)𝜋
sin(𝑗 − 𝑙) 𝜋 +

𝐿

(𝑗 + 𝑙)𝜋
sin(𝑗 + 𝑙) 𝜋) − (

𝐿

(𝑗 − 𝑙)𝜋
sin(0)

+
𝐿

(𝑗 + 𝑙)𝜋
sin (0))] 

Since j and l both are integers and so (j-l) and (j+l) are also integers then sin(𝑗 − 𝑙) 𝜋 = sin(𝑗 + 𝑙) 𝜋 = 0, 

and we have  

𝐼2 = 0…… . . (37𝑏) 

A function of two variables is called Kronecker Delta function if its value is 1 when the variables are equal 

and 0 otherwise. The integral 𝐼2 then can be expressed as 

𝐼2 =
1

2
∑ 𝐷𝑗

∞

𝑗=1

(𝑚1 − 𝑚2)
𝐿

2
𝛿𝑗,𝑙 

Where, 𝛿𝑗,𝑙 is the Kronecker Delta function. Then we have  

𝐼2 = 𝐷𝑗(𝑚1 − 𝑚2)
𝐿

2
…… ……… …… …… . . (38) 

From equation 36c 

𝐼3 = ∫
(1 − 𝑅)𝐽

𝑣𝑑
exp (−

𝑥

𝑑
) 𝑐𝑜𝑠 (

𝑙𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0

 

𝐼3 = ∫
(1 − 𝑅)𝐽

𝑣𝑑
exp (−

𝑥

𝑑
)
1

2
[exp (

𝑖𝑙𝜋

𝐿
) 𝑥 + exp (

−𝑖𝑙𝜋

𝐿
) 𝑥]𝑑𝑥

𝐿

0

 

𝐼3 =
(1 − 𝑅)𝐽

2𝑣𝑑
∫ [exp (−

1

𝑑
+

𝑖𝑙𝜋

𝐿
) 𝑥 + exp (−

1

𝑑
−

𝑖𝑙𝜋

𝐿
) 𝑥]𝑑𝑥

𝐿

0

 

𝐼3 =
(1 − 𝑅)𝐽

2𝑣𝑑
[
exp (−

𝐿
𝑑

+
𝑖𝑙𝜋
𝐿 ) 𝐿

(−
1
𝑑 +

𝑖𝑙𝜋
𝐿 )

+
exp (−

𝐿
𝑑

−
𝑖𝑙𝜋
𝐿 )𝐿

(−
1
𝑑 −

𝑖𝑙𝜋
𝐿 )

−
1

(−
1
𝑑 +

𝑖𝑙𝜋
𝐿 )

−
1

(−
1
𝑑 −

𝑖𝑙𝜋
𝐿 )

] 

𝐼3 =
(1 − 𝑅)𝐽

2𝑣𝑑
[
exp (−

𝐿
𝑑
) exp (𝑖𝑙𝜋)

−
1
𝑑 (1 −

𝑖𝑙𝜋𝑑
𝐿 )

+
exp (−

𝐿
𝑑
) exp (−𝑖𝑙𝜋)

−
1
𝑑 (1 +

𝑖𝑙𝜋𝑑
𝐿 )

−
1

−
1
𝑑 (1 −

𝑖𝑙𝜋𝑑
𝐿 )

−
1

−
1
𝑑 (1 +

𝑖𝑙𝜋𝑑
𝐿 )

] 



𝐼3 =
−(1 − 𝑅)𝐽

2𝑣
[
exp (−

𝐿
𝑑
) ((exp(𝑖𝑙𝜋) (1 +

𝑖𝑙𝜋𝑑
𝐿 ) + exp (−𝑖𝑙𝜋) (1 −

𝑖𝑙𝜋𝑑
𝐿 ))

(1 −
𝑖𝑙𝜋𝑑
𝐿

)(1 +
𝑖𝑙𝜋𝑑
𝐿

)

−
(1 +

𝑖𝑙𝜋𝑑
𝐿 ) + (1 −

𝑖𝑙𝜋𝑑
𝐿 )

(1 −
𝑖𝑙𝜋𝑑
𝐿 ) (1 +

𝑖𝑙𝜋𝑑
𝐿 )

] 

𝐼3 =
−(1 − 𝑅)𝐽

2𝑣
[
exp (−

𝐿
𝑑
) [ (exp(𝑖𝑙𝜋) + exp (−𝑖𝑙𝜋)) +

𝑖𝑙𝜋𝑑
𝐿 (𝑒𝑥𝑝(𝑖𝑙𝜋) − exp (−𝑖𝑙𝜋))]

1 + (
𝑙𝜋𝑑
𝐿 )2

−
2

1 + (
𝑙𝜋𝑑
𝐿 )2

] 

𝐼3 =
−(1 − 𝑅)𝐽

2𝑣
[
exp (−

𝐿
𝑑
) (2 cos(𝑙𝜋) +

𝑖𝑙𝜋𝑑
𝐿 2sin (𝑙𝜋))

1 + (
𝑙𝜋𝑑
𝐿 )2

−
2

1 + (
𝑙𝜋𝑑
𝐿 )2

] 

Since l is an integer, sin(𝑙𝜋) = 0, we have 

𝐼3 =
−(1 − 𝑅)𝐽

2𝑣
[
exp (−

𝐿
𝑑
)2 cos(𝑙𝜋)

1 + (
𝑙𝜋𝑑
𝐿 )2

−
2

1 + (
𝑙𝜋𝑑
𝐿 )2

] 

𝐼3 =
−(1 − 𝑅)𝐽

2𝑣
[
exp (−

𝐿
𝑑
) 2 cos(𝑙𝜋) − 2

1 + (
𝑙𝜋𝑑
𝐿 )2

 

𝐼3 =
(1 − 𝑅)𝐽

𝑣
[
1 − exp (−

𝐿
𝑑
) cos(𝑙𝜋)

1 + (
𝑙𝜋𝑑
𝐿 )

2 ] 

Since l is just an index it can be defined to be anything, 𝑙 = 𝑗, then we can write the above equation as: 

𝐼3 =
(1 − 𝑅)𝐽

𝑣
[
 
 
 1 − exp (−

𝐿
𝑑
)cos(𝑗𝜋)

1 + (
𝑗𝜋𝑑
𝐿 )

2

]
 
 
 

… ……… …… …… . . (39) 

 

Now substituting for 𝐼1, 𝐼2, 𝑎𝑛𝑑 𝐼3 into equation 35 we have 

0 + 𝐷𝑗(𝑚1 − 𝑚2)
𝐿

2
=

(1 − 𝑅)𝐽

𝑣
[
 
 
 1 − exp (−

𝐿
𝑑
) cos(𝑗𝜋)

1 + (
𝑗𝜋𝑑
𝐿 )

2

]
 
 
 

 

And finally, 



𝐷𝑗 =
2(1 − 𝑅)𝐽

(𝑚1 − 𝑚2)𝐿𝑣
[
 
 
 1 − exp (−

𝐿
𝑑
) cos(𝑗𝜋)

1 + (
𝑗𝜋𝑑
𝐿 )

2

]
 
 
 

…… …… ……… …… …… (40) 

 

 

MATLAB Code: 

clc 

clear 

 

% Putting Constant Values 

L= 1e-6;          % Thickness of metal sample is 1 um 

tend= 1e-9;       % Diffusion upto 1 ns 

R= 0.9; 

Finally, the solution obtained as: 

𝑇𝑙(𝑥, 𝑡) = 𝐷0 (1 − 𝑒−
𝐶𝑡
𝑣 ) + ∑𝐷𝑗

∞

𝑗=1

(𝑒𝑚1𝑡 − 𝑒𝑚2𝑡)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) 

𝑇𝑒(𝑥, 𝑡) =
𝜇𝐷0𝐶

𝑣
𝑒−

𝐶𝑡
𝑣 + 𝜇 ∑ 𝐷𝑗

∞

𝑗=1

(𝑚1𝑒
𝑚1𝑡 − 𝑚2𝑒

𝑚2𝑡)𝑐𝑜𝑠 (
𝑗𝜋

𝐿
𝑥) + 𝑇𝑙(𝑥, 𝑡) 

𝐷0 =
(1 − 𝑅)𝐽

𝐿𝐶
(1 − 𝑒−𝐿

𝑑) 

𝐷𝑗 =
2(1 − 𝑅)𝐽

(𝑚1 − 𝑚2)𝐿𝑣
[
 
 
 1 − exp (−

𝐿
𝑑
) cos(𝑗𝜋)

1 + (
𝑗𝜋𝑑
𝐿 )

2

]
 
 
 

 

𝜆𝑗 = (
𝑗𝜋

𝐿
)2 

𝑚1 =
−(𝐶 + 𝜆𝑗𝜇𝑘) + √(𝐶 + 𝜆𝑗𝜇𝑘)

2
− 4𝜆𝑗𝑣𝑘

2𝑣
 

𝑚2 =
−(𝐶 + 𝜆𝑗𝜇𝑘) − √(𝐶 + 𝜆𝑗𝜇𝑘)

2
− 4𝜆𝑗𝑣𝑘

2𝑣
 

 



J=4.8; 

d= 15e-9; 

g= 17e17; 

k=55; 

Ce= 3.0e5; 

Cl= 2.3e6; 

N=500; 

 

% Calculation of other constant 

C= Ce+Cl; 

Mu= Cl/g; 

Nu= (Ce*Cl)/g; 

Dnot= (((1-R)*J)/(L*C))*(1-exp(-L/d)); 

 

 

 

%Mesh spacing and time steps 

nx=100; 

nt=100; 

dx= L/(nx-1); 

dt=tend/(nt-1); 

 

% Creating arrays to save data 

y= linspace (0, L, nx); 

t= linspace (0, tend, nt); 

 

 

% Memory preallocation 

Tl=zeros(nx, nt); 

Te=zeros(nx, nt); 

 

for i=1:nt 

    ti=(dt*i)-dt; 



 

    for r=1:nx 

        xr=(dx*r)-dx; 

 

        newsumTl=0.0; 

        newsumTe=0.0; 

        for j=1:N  

            Lamda=((j*pi)/L)^2; 

            P=C+(Lamda*Mu*k); 

            Q=4*Lamda*Nu*k; 

            m1=(-P+sqrt(P^2-Q))/(2*Nu); 

            m2=(-P-sqrt(P^2-Q))/(2*Nu); 

            A=1-((exp(-L/d))*cos(j*pi)); 

            B=1+((d*j*pi)/L)^2; 

            D=(2*(1-R)*J*A)/((m1-m2)*L*Nu*B); 

            sumtermTl=D*(exp(m1*ti)-exp(m2*ti))*cos((j*pi*xr)/L); 

            sumtermTe=D*(m1*exp(m1*ti)-m2*exp(m2*ti))*cos((j*pi*xr)/L); 

            newsumTl=newsumTl+sumtermTl; 

            newsumTe=newsumTe+sumtermTe; 

        end 

        Tl(r, i)=Dnot*(1-exp((-C*ti)/Nu))+newsumTl; 

        Te(r, i)=(Mu*Dnot*C*exp(-(C*ti)/Nu))/Nu + Mu*newsumTe + Dnot*(1-exp((-C*ti)/Nu))+newsumTl; 

         

    end 

     

 

 

end 

 

 

 

 

 



% Plotting temperature profile as a function of time 

        plot(t,Tl(1, :),'r','linewidth', 3) 

        axis([-50e-12 1050e-12 -1 12]); 

        title('Analytical Solution for 1D Surface Temperature Profile ','fontweight', 'bold','FontSize',12) 

        xlabel('Time (s)','fontweight','bold','FontSize',12) 

        ylabel('Lattice Temperature (K)','fontweight', 'bold','FontSize',12) 

 

  

% Plotting temperature profile as a function of Distance 

        plot(y,Tl(:, 100),'r','linewidth', 3) 

        axis([-50e-9 1050e-9 -1 10]); 

        title('Analytical Solution for 1D Temperature Profile after 100 ps','fontweight', 'bold','FontSize',12) 

        xlabel('Distance (m)','fontweight','bold','FontSize',12) 

        ylabel('Lattice Temperature (K)','fontweight', 'bold','FontSize',12) 

         

         

% A surface plot is often a good way to study a solution. 

        surf(y, t, Tl)  

        title('Analytical Solution of 1D Heat equation','fontweight', 'bold','FontSize',12) 

        xlabel('Distance x (m)','fontweight', 'bold','FontSize',12) 

        ylabel('Time t (s)','fontweight', 'bold','FontSize',12) 

        zlabel('Lattice Temperature T (K)','fontweight', 'bold','FontSize',12) 

 

% Plotting temperature profile as a function of time 

        plot(t,Te(1, :),'r','linewidth', 3) 

        axis([-50e-12 1050e-12 -10 120]); 

        title('Analytical Solution for 1D Surface Temperature Profile ','fontweight', 'bold','FontSize',12) 

        xlabel('Time (s)','fontweight','bold','FontSize',12) 

        ylabel('Electron Temperature (K)','fontweight', 'bold','FontSize',12) 

 

  

% Plotting temperature profile as a function of Distance 

        plot(y,Tl(:, 100),'r','linewidth', 3) 



        axis([-50e-9 1050e-9 -1 10]); 

        title('Analytical Solution for 1D Temperature Profile after 100 ps','fontweight', 'bold','FontSize',12) 

        xlabel('Distance (m)','fontweight','bold','FontSize',12) 

        ylabel('Electron Temperature (K)','fontweight', 'bold','FontSize',12) 

         

         

% A surface plot is often a good way to study a solution. 

        surf(y, t, Te)  

        title('Analytical Solution of 1D Heat equation','fontweight', 'bold','FontSize',12) 

        xlabel('Distance x (m)','fontweight', 'bold','FontSize',12) 

        ylabel('Time t (s)','fontweight', 'bold','FontSize',12) 

        zlabel('Electron Temperature T (K)','fontweight', 'bold','FontSize',12) 

 

 

Results: 

 



 

 



 

 



 

 

 

 


