
Heat Equation 

 

Heat equation governs the temperature distribution in an object. According to the second law of 

thermodynamics, if two identical bodies are brought into thermal contact and one is hotter than the 

other, then heat must flow from hotter body to the colder one at a rate proportional to the 

temperature difference of the two bodies. Therefore, in a metal rod with non-uniform temperature, 

heat (thermal energy) is transferred from regions of higher temperature to regions of lower 

temperature. Consider a uniform rod of length L with non-uniform temperature lying on the x-axis 

from x = 0 to x = L. Assume that the lateral surface of the rod is perfectly insulated, and heat can 

enter or leave the rod through either of the rod ends and thereby creating a 1D temperature 

distribution.  

 

Fig. 1: A rectangular metallic rod with insulated lateral surface and nonuniform heat distribution along length. 

 

Consider an arbitrary thin slice of the rod of width Δx, between x and x+ Δx. The slice is so thin 

that the temperature throughout the slice is T (x, t). The time heat energy needs to transit through 

the tiny slice is Δt. The Heat (or thermal) energy of a body with uniform properties is defined as:  

𝑄(𝑥, 𝑡) = 𝑐 × 𝑚 × 𝑇 = 𝑐(𝑥) × 𝜌(𝑥)𝐴∆𝑥 × 𝑇(𝑥, 𝑡) …………………… ..  (1) 

Where, c(x) is the specific heat of the material, defined as the amount of heat energy that it takes 

to raise one unit of mass of the material by one unit of temperature [c(x) > 0]. The specific heat 

may not be uniform throughout the bar and in practice the specific heat depends upon the 

temperature. However, this will generally only be an issue for large temperature differences. T(x, 

t) is body temperature at any point x and any time t, m is the body mass. ρ(x) is the mass density 

which is the mass per unit volume of the material. The mass density may not be uniform throughout 

the rod.  

Let 𝑆(𝑥, 𝑡) be the heat energy generated per unit volume at location x, and time t. Then, the total 

energy generated inside the thin slice is given by: 



∆𝑄𝑔 = 𝐴 × ∆𝑥 × 𝑆(𝑥, 𝑡) …………………………… ……(2) 

Now let, Φ (x, t) be the heat flux that is the amount of thermal energy that flows to the right per 

unit surface area per unit time. The “flows to the right” bit simply tell us that if ϕ (x, t) > 0 for 

some x and t then the heat is flowing to the right at that point and time. Likewise, if ϕ (x, t) < 0 

then the heat will be flowing to the left at that point and time.  

According to the law of conservation of energy, the time rate of change of the heat stored at a point 

on the rod is equal to the net flow of heat into that point.  
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∆𝑡  

+ Total heat energy 

generated inside 

the segment 

= Heat in from left 

boundary 

- Heat out from 

right boundary 

 

𝑐(𝑥) 𝜌(𝑥) 𝐴 ∆𝑥[𝑇(𝑥, 𝑡 + ∆𝑡) − 𝑇(𝑥, 𝑡)] + 𝐴 ∆𝑥 𝑆(𝑥, 𝑡) ∆𝑡
= 𝐴 ∆𝑡 𝜑(𝑥, 𝑡) − 𝐴 ∆𝑡 𝜑(𝑥 + ∆𝑥, 𝑡) ……………………… …  (3) 

Dividing both sides by  𝐴 ∆𝑥 ∆𝑡, equation (3) becomes: 

𝑐(𝑥) 𝜌(𝑥)[
𝑇(𝑥,𝑡+∆𝑡)−𝑇(𝑥,𝑡)

∆𝑡
] + 𝑆(𝑥, 𝑡) = [

𝜑(𝑥,𝑡)−𝜑(𝑥+∆𝑥,𝑡)

∆𝑥
]…… ……………… . . (4)      

The above equation contains two unknown functions T and 𝜑, both of which are function of both 

time and space. According to Fourier’s law of heat transfer, rate of heat transfer is proportional to 

negative temperature gradient.   

𝜑(𝑥, 𝑡) = −𝑘(𝑥)
𝝏𝑻

𝝏𝒙
………… …………………………… …………………(5) 

Where 𝑘(𝑥)  is the thermal conductivity of the material being studied and measures the ability of 

the material to conduct heat energy. Thermal conductivity can vary with the location of the rod as 

well as the temperature. But for small change in total temperature (less than 10 degree), the thermal 

conductivity can be treated as temperature independent. Now applying Fourier law and then 

rearranging equation (4) we have, 

𝑐(𝑥)𝜌(𝑥)
𝑇(𝑥,𝑡+∆𝑡)−𝑇(𝑥,𝑡)

∆𝑡
= 𝑘(𝑥) [

(
𝜕𝑇

𝜕𝑥
)
𝑥+∆𝑥

−(
𝜕𝑇

𝜕𝑥
)
𝑥

∆𝑥
] + 𝑆(𝑥, 𝑡)    ……………………………. (6) 

Now taking the limit Δt, Δx → 0 equation (6) becomes:  

𝑐(𝑥)𝜌(𝑥)
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
[𝑘(𝑥)

𝜕𝑇

𝜕𝑥
] + 𝑆(𝑥, 𝑡) …………………………… ………  (7) 

Now assume that the material in the rod is uniform in nature and thus the thermal properties 

(specific heat and thermal conductivity) and mass density all are constants. 

𝑐(𝑥) = 𝑐;  𝜌(𝑥) = 𝜌; 𝑎𝑛𝑑 𝑘(𝑥) = 𝑘  



The heat equation then takes the form: 

𝑐𝜌
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
 + 𝑆(𝑥, 𝑡)………………… ………………………… … . (8) 

The above equation can further be simplified by defining the thermophysical term: thermal 

diffusivity to be 

𝛼 =
𝑘

𝑐𝜌
 

The heat equation then takes the form: 

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
 +

𝑆(𝑥, 𝑡)

𝑐𝜌
………… ………………………… ………… . (9) 

This is 1D form of heat equation. We can get the 2D and 3D version of heat equation by using 

Laplacian operator to the first term in right hand side of equation (9) 

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 +

𝑆(𝑥, 𝑡)

𝑐𝜌
…………………… ………………………… . (10) 

Tow-Temperature Model 

The Two Temperature Model (TTM) or Parabolic Two Step (PTS) model is given by: 

𝐶𝑒(𝑇𝑒)
𝜕𝑇𝑒

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝐾𝑒(𝑇𝑒, 𝑇𝑙)

𝜕𝑇𝑒

𝜕𝑥
) − 𝑔(𝑇𝑒 − 𝑇𝑙) + 𝑆(𝑥, 𝑡) …………………………………… (10) 

𝐶𝑙
𝜕𝑇𝑙

𝜕𝑡
=  𝑔(𝑇𝑒 − 𝑇𝑙) …………………………………………………………………………. (11) 

Where, 

𝐶𝑒 : Heat capacity of electrons 

𝐶𝑙 : Heat capacity of lattice 

g : Electron-phonon coupling factor 

𝐾𝑒 : Thermal conductivity 

𝑆(𝑥, 𝑡) : Laser source term, heat energy generated per unit volume per unit time. 

 

The electron-phonon coupling factor and the lattice heat capacity are assumed to be constant. The 

electron heat capacity is a strong function of the electron temperature and thermal conductivity is 

obtained from electron and lattice temperature and equilibrium electron thermal conductivity 

measured at room temperature. 

𝐶𝑒 = 𝐶𝑒
⋰𝑇𝑒 …………………………………………………………………………………… (12) 

𝐾𝑒(𝑇𝑒 , 𝑇𝑙) = 𝑘
𝑇𝑒

𝑇𝑙
 …………………………………………………………………………….. (13) 



Where, k is the equilibrium electron thermal conductivity measured at room temperature. The laser 

source term has an exponential decay in space to account for absorption in a nontransparent media, 

and a Gaussian shape in time. Neglecting the temperature dependence of the optical properties a 

reasonable approximation of the source term is given as. 

𝑆(𝑥, 𝑡) = (1 − 𝑅)
𝐽

𝑡𝑝𝑑
∗ exp [−

𝑥

𝑑
− 2.77(

𝑡

𝑡𝑝
)2] ………………………………………………(14) 

 

Where, 

R : Reflectivity of the material  

J : Laser fluence  

𝑑 : Radiation penetration depth  

𝑡𝑝 : Pulse width  

Here R and α are material properties and J and 𝑡𝑝 are laser parameters. 

 

Numerical Solution of 1D Heat Equation using Finite Difference Methods for 

Homogeneous Dirichlet Boundary Condition 

The heat equation provides a model for transient heat conduction in a slab of material with finite 

thickness. Although not exact, numerical solution obtained by methods of numerical analysis gives 

a very good approximation of the intended model. The Finite Difference method (FDM) is one of 

the most frequently used numerical tools for solving heat equation. The basic idea behind FDM is 

to replace continuous partial differential equation (PDE) by difference formulas that involves 

discrete values associated with nodes on a mesh. The mesh is a set of locations where discrete 

values are computed. Since heat equation involves both time and space derivatives the mesh can 

be defined by two key parameters: (i) the local distance between adjacent points in space (x) and 

(ii) the local distance between adjacent time steps (t). Depending on the combinations of mesh 

points used in difference formulas, the heat equation can be solved for three FDM schemes: 

I. Forward Time Centered Space (FTCS) 

II. Backward Time Centered Space (BTCS) 

III. Crank-Nicolson Scheme (CNS) 

The heat we will be solving here does not involve the source term and taking the room temperature 

as initial condition and using thermally insulated boundary condition. 

Heat Equation: 
𝝏𝑻

𝝏𝒕
= 𝜶

𝝏𝟐𝑻

𝝏𝒙𝟐 

IC: 𝑇(𝑥, 𝑡 = 0) = 𝑇𝑅𝑜𝑜𝑚 = 300 

BC at x = 0: 𝑇(𝑥 = 0, 𝑡) = 𝑇𝑆1 = 0 

BC at x = L: (𝑥 = 𝐿, 𝑡) = 𝑇𝑆2 = 0 



 

Scheme I: Forward Time Centered Space (FTCS) 

FTCS approximation to heat equation is: 

𝑇𝑖
𝑚+1 = 𝑟𝑇𝑖+1

𝑚 + (1 − 2𝑟)𝑇𝑖
𝑚 + 𝑟𝑇𝑖−1

𝑚 ; where, 𝑟 =
𝛼∆𝑡

∆𝑥2 

In matrix multiplication form: 𝑇𝑚+1 = 𝐴𝑇𝑚 

𝐴 =

[
 
 
 
 
 
 
 

1                      0                                0                     0                        0                    0
𝑟                 (1 − 2𝑟)                       𝑟                     0                        0                    0
0                         𝑟                          (1 − 2𝑟)           𝑟                       0                     0 

… …
… …

 0                          0                              𝑟               (1 − 2𝑟)                 𝑟                  0  
0                         0                              0                      𝑟                 (1 − 2𝑟)            𝑟 
 0                          0                              0                      0                        0                  1  

 

]
 
 
 
 
 
 
 

 

 

For Nb, 𝛼 =
𝜅

𝜌𝐶𝑝
=

55 𝑊𝑚−1𝐾−1

(8560 𝑘𝑔𝑚−3)(260 𝐽𝑘𝑔−1𝐾−1)
= 2.47 × 10−5 𝑚2𝑠−1 

For Stable solution 𝑟 <
1

2
; 

𝛼∆𝑡

∆𝑥2 <
1

2
; ∆𝑡 <

∆𝑥2

2𝛼
 

Let, 𝑡𝑒𝑛𝑑 = 1 𝑛𝑠,  L = 1 µm and 𝑛𝑥 = 101; ∆𝑥 =
𝐿

(𝑛𝑥−1)
=

10−6

100
= 10−8 

∆𝑡 <
(10−8)2

4.95 × 10−5
; ∆𝑡 ≅

(10−8)2

1 × 10−4
= 10−12 𝑠𝑒𝑐  

𝑛𝑡 =
𝑡𝑒𝑛𝑑

∆𝑡
+ 1 =

10−9

10−12
+ 1 = 1001 

Matlab Code: 

clc 

clear 

 

% Putting Constant Values 

L=1e-6;     % Thickness of metal sample is 1 um 

tend=1e-9;  % Diffusion upto 1 ns 

alpha=2.47e-5; 

 

%Mesh spacing and time steps 



nx=101; 

nt=1001; 

dx=L/(nx-1); 

dt=tend/(nt-1); 

 

% Calculation of other constant 

r=(alpha*dt)/dx^2; 

r2=1-2*r; 

 

% Creating arrays to save data 

x=linspace(0,L,nx); 

t=linspace(0,tend,nt); 

 

% Memory preallocation 

u=zeros(nx,nt); 

 

%Initial and Boundary Condition 

u(:,1)=300;     % The slab of material is kept at room temperature 

u(1,:)=0;       % Homogenious Dirichlet BC at the front 

u(nx,:)=0;      % % Homogenious Dirichlet BC at the rear 

 

% Determining FTCS values for interior nodes 

    for m=2:nt 

        for i=2:(nx-1) 

            u(i,m)=r*u(i-1,m-1)+r2*u(i,m-1)+r*u(i+1,m-1); 

        end 

    end 

 

% Plotting temporal profile of Temperature 

        plot(t,u(2,:),'r','linewidth', 3) 

        axis([-0.1e-9 1.1e-9 -10 310]); 

        title('Numerical Solution for 1D Surface Temperature Profile using FTCS scheme','fontweight', 

'bold','FontSize',12) 



        xlabel('Time (s)','fontweight','bold','FontSize',12) 

        ylabel('Temperature (K)','fontweight', 'bold','FontSize',12) 

 

         

% Plotting temperature profile as a function of Distance 

        plot(x,u(:, 200),'r','linewidth', 3) 

        axis([-0.05e-6 1.05e-6 -10 310]); 

        title('Numerical Solution for 1D Temperature Profile after 500 ps','fontweight', 'bold','FontSize',12) 

        xlabel('Distance (m)','fontweight','bold','FontSize',12) 

        ylabel('Temperature (K)','fontweight', 'bold','FontSize',12) 

Results: 

 

 



 

 

 

Scheme II: Backward Time Centered Space (BTCS) 

BTCS approximation to heat equation is: 

𝑇𝑖
𝑚 − 𝑇𝑖

𝑚−1

∆𝑡
= 𝛼

𝑇𝑖−1
𝑚 − 2𝑇𝑖

𝑚 + 𝑇𝑖+1
𝑚

∆𝑥2
 

−
𝛼

∆𝑥2
𝑇𝑖−1

𝑚 + (
1

∆𝑡
+

2𝛼

∆𝑥2
) 𝑇𝑖

𝑚 −
𝛼

∆𝑥2
𝑇𝑖+1

𝑚 =
1

∆𝑡
𝑇𝑖

𝑚−1 

𝑎𝑖𝑇𝑖−1
𝑚 + 𝑏𝑖𝑇𝑖

𝑚 + 𝑐𝑖𝑇𝑖+1
𝑚 = 𝑑𝑖 

Therefore, the system of equations can be represented as a tridiagonal system. A tridiagonal system 

is one with a bandwidth of 3. 



 

[
 
 
 
 
 
 
 
𝑏1            𝑐1                                                                                                      
𝑎2            𝑏2         𝑐2                                                                                         
                 𝑎3          𝑏3          𝑐3                                                                         

                  …          …           …                                            
                  …           …           …              

                                        …           …             …    
                                                                        𝑎𝑛−1         𝑏𝑛−1         𝑐𝑛−1

                                                                                           𝑎𝑛              𝑏𝑛   ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝑇1

𝑇2

𝑇3

…
…
…

𝑇𝑛−1

𝑇𝑛 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑑1

𝑑2

𝑑3

…
…
…

𝑑𝑛−1

𝑑𝑛 ]
 
 
 
 
 
 
 

 

Where, 

𝑎𝑖 = −
𝛼

∆𝑥2
; 𝑏𝑖 =

1

∆𝑡
+

2𝛼

∆𝑥2
;  𝑐𝑖 = −

𝛼

∆𝑥2
, 𝑎𝑛𝑑 𝑑𝑖 =  

1

∆𝑡
𝑇𝑖

𝑚−1   

 

So in matrix form the system of equations can be written as follows: 

𝐴{𝑇} = {𝑑} 

This system can be efficiently solved using LU factorization with backward substitution. The LU 

factorization is such that the system of equations can be written as: 

[𝐿]{[𝑈]{𝑇} − {𝐷}} = [𝐴]{𝑇} − {𝑑} 

Using rules of matrix multiplication  

[𝐴] = [𝐿][𝑈] ……………… ………….  (1) 𝑎𝑛𝑑   

[𝐿]{𝐷} = {𝑑}………………… ……………… . (2) 

The upper triangular matrix is such that 



 [𝑈]{𝑇} − {𝐷} = 0 …………………………… …… ..  (3) 

To solve the tridiagonal system, we must follow two steps:  

(i) LU factorization  

(ii) Substitution step 

LU Factorization: For the coefficient matrix being positive definite the LU factorization can be 

done without pivoting. The LU factorization can be done as follows: 

[𝐴] = [𝐿][𝑈] where,  

 

𝐴 =

[
 
 
 
 
 
 
 
𝑏1            𝑐1                                                                                                      
𝑎2            𝑏2         𝑐2                                                                                         
                 𝑎3          𝑏3          𝑐3                                                                         

                  …          …           …                                            
                  …           …           …              

                                        …           …             …    
                                                                        𝑎𝑛−1         𝑏𝑛−1         𝑐𝑛−1

                                                                                           𝑎𝑛              𝑏𝑛   ]
 
 
 
 
 
 
 

 

𝐿 =

[
 
 
 
 
 
 
 

𝑒1                                                                                                                  
𝑎2            𝑒2                                                                                                  
                 𝑎3          𝑒3                                                                                   

                  …          …                                                        
                  …           …                          

                                        …           …                 
                                                                        𝑎𝑛−1         𝑒𝑛−1         

                                                                                                    𝑎𝑛              𝑒𝑛   ]
 
 
 
 
 
 
 

 

And, 

𝑈 =

[
 
 
 
 
 
 
 
1              𝑓1                                                                                                      
                 1         𝑓2                                                                                         
                           1          𝑓3                                                                         

                          …           …                                            
                           …           …              

                                                  …             …    
                                                                                 1         𝑓𝑛−1

                                                                                                   1       ]
 
 
 
 
 
 
 

 

Evaluating each nonzero term in the product LU and setting it equal to the corresponding entry in 

A gives:  

𝑒1 = 𝑏1 

𝑒1𝑓1 = 𝑐1 



𝑎2 = 𝑎2 

𝑎2𝑓1 + 𝑒2 = 𝑏2 

𝑒2𝑓2 = 𝑐2 

 

𝑎𝑖 = 𝑎𝑖 

𝑎𝑖𝑓𝑖−1 + 𝑒𝑖 = 𝑏𝑖  

𝑒𝑖𝑓𝑖 = 𝑐𝑖 

……………. 

……………. 

 

𝑎𝑛 = 𝑎𝑛 

𝑎𝑛𝑓𝑛−1 + 𝑒𝑛 = 𝑏𝑛 

 

Solving for the unknown 𝑒𝑖 and 𝑓𝑖 gives 

𝑒1 = 𝑏1 

𝑓1 =
𝑐1

𝑒1
⁄ =

𝑐1
𝑏1

⁄  

𝑒𝑖 = 𝑏𝑖 − 𝑎𝑖𝑓𝑖−1 

𝑓𝑖 =
𝑐𝑖

𝑒𝑖
⁄  

 

Substitution Steps: First, Eq. (2) is used to generate an intermediate vector {D} by forward 

substitution. Then, the result is substituted into Eq. (3), which can be solved by back substitution 

for {T}. 

{𝑫} =  
{𝒅}

[𝑳]⁄  

Forward substitution results in: 

𝐷1 =
𝑑1

𝑒1
⁄  

𝐷𝑖 =
(𝑑𝑖 − 𝑎𝑖𝐷𝑖−1)

𝑒𝑖
⁄  

Backward substitution solves for T 



{𝑇} =
{𝐷}

{𝑈}⁄  

Which gives: 

𝑇𝑛 = 𝐷𝑛 

𝑇𝑖 = 𝐷𝑖 − 𝑓𝑖𝐷𝑖+1 

 

For homogeneous Dirichlet boundary condition where both boundaries are at zero temperature we 

have: 

𝑏1 = 1          𝑐1 = 0          𝑑1 = 𝑇𝑠1 = 0 

 

𝑏𝑛 = 0          𝑏𝑛 = 1          𝑑𝑛 = 𝑇𝑠2 = 0 

 

MATLAB Codes: 

% Solve 1D Heat Equation with BTCS scheme 

 

clc 

clear 

 

% Putting constant values 

L=1e-6; 

tend=1e-9; 

nx=101; 

nt=1001; 

alpha=2.47e-5; 

 

%Mesh spacing and time steps 

dx=L/(nx-1); 

dt=tend/(nt-1); 

 

% Creating arrays to save data 

x=linspace(0,L,nx); 

t=linspace(0,tend,nt); 



 

% Memory preallocation 

T=zeros(nx,nt); 

 

%Setting IC and BC 

T(:,1)=300; 

T(1,:)=0; 

T(nx,:)=0; 

 

% LU factorization and getting coefficient matrix of tridiagonal system 

a=(-alpha/dx^2)*ones(nx,1); 

c=a; 

b=((1/dt)*ones(nx,1))-2*a; 

b(1)=1; 

c(1)=0; 

a(end)=0; 

b(end)=1; 

[e,f]=tridiagLU(a,b,c); 

 

%Solve for temperature profile by forward and backward substitution 

for m=2:nt 

    d=T(:,m-1)./dt; 

    d(1)=T(1); 

    d(end)=T(nx); 

    T(:,m)= tridiagLUsolve(d,a,e,f,T(:,m-1)); 

end 

 

% Plotting temperature profile as a function of time 

        plot(t,T(2,:),'r','linewidth', 3) 

        axis([-0.1e-9 1.1e-9 -10 310]); 

        title('Numerical Solution for 1D Surface Temperature Profile using BTCS scheme','fontweight', 

'bold','FontSize',12) 

        xlabel('Time (s)','fontweight','bold','FontSize',12) 



        ylabel('Temperature (K)','fontweight', 'bold','FontSize',12) 

 

% Plotting temperature profile as a function of Distance 

        plot(x,T(:, 200),'r','linewidth', 3) 

        axis([-0.05e-6 1.05e-6 -10 310]); 

        title('Numerical Solution for 1D Temperature Profile after 500 ps','fontweight', 'bold','FontSize',12) 

        xlabel('Distance (m)','fontweight','bold','FontSize',12) 

        ylabel('Temperature (K)','fontweight', 'bold','FontSize',12) 

         

         

% Define function for LU factorization 

function [e,f]=tridiagLU(a,b,c) 

n=length(a); 

e=zeros(n,1); 

f=e; 

 

 

e(1)=b(1); 

f(1)=c(1)/b(1); 

    for i=2:n 

        e(i)=b(i)-a(i)*f(i-1); 

        f(i)=c(i)/e(i); 

    end 

end 

 

 

% Define function for solving Tridiagonal system of equations 

function D=tridiagLUsolve(d,a,e,f,D) 

n=length(d); 

 

    if nargin<5 

        D=zeros(n,1); 

    end 



 

    D(1)=d(1)/e(1); 

 

        for i=2:n 

            D(i)=(d(i)-a(i)*D(i-1))/e(i); 

        end 

 

        for i=n-1:-1:1 

            D(i)=D(i)-f(i)*D(i+1); 

        end 

end 

 

Results: 

 



 

Scheme III: Crank-Nicolson Scheme (CNS) 

Like BTCS, CNS is an implicit method and is unconditionally stable. In FTCS and BTCS scheme 

the right-hand side of the heat equation is approximated by the central difference evaluated at the 

current time step but in CNS, the right-hand side of the heat equation is approximated with the 

average of the central differences evaluated at the current and the previous time steps. The left side 

of the heat equation is approximated with the backward time difference used in the BTCS scheme. 
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MATLAB Codes: 

% Solve 1D Heat Equation with Crank-Nicolson scheme 

clc 

clear 

 

% Putting constant values 

L=1e-6; 

tend=1e-9; 

alpha=2.47e-5; 

 

%Mesh spacing and time steps 

nx=101; 

nt=1001; 

dx=L/(nx-1); 

dt=tend/(nt-1); 

 

% Creating arrays to save data 

x=linspace(0,L,nx); 

t=linspace(0,tend,nt); 

 

% Memory preallocation 

T=zeros(nx,nt); 

 

%Setting IC and BC 

T(:,1)=300; 

T(1,:)=0; 

T(nx,:)=0; 

 

% LU factorization and getting coefficient matrix of tridiagonal system 

a=(-alpha/(2*dx^2))*ones(nx,1); 

c=a; 

b=((1/dt)*ones(nx,1))-(a+c); 



b(1)=1; 

c(1)=0; 

a(end)=0; 

b(end)=1; 

[e,f]=tridiagLU(a,b,c); 

 

%Solve for temperature profile by forward and backward substitution 

for m=2:nt 

    d=T(:,m-1)./dt-[0;a(2:end-1).*T(1:end-2,m-1);0]+[0;(a(2:end-1)+c(2:end-1)).*T(2:end-1,m-1);0]-

[0;c(2:end-1).*T(3:end,m-1);0]; 

    d(1)=T(1); 

    d(end)=T(nx); 

    T(:,m)= tridiagLUsolve(d,a,e,f,T(:,m-1)); 

end 

 

% Plotting temperature profile as a function of time 

        plot(t,T(2,:),'r','linewidth', 3) 

        axis([-0.1e-9 1.1e-9 -10 310]); 

        title('Numerical Solution for 1D Surface Temperature Profile using CNS scheme','fontweight', 

'bold','FontSize',12) 

        xlabel('Time (s)','fontweight','bold','FontSize',12) 

        ylabel('Temperature (K)','fontweight', 'bold','FontSize',12) 

 

% Plotting temperature profile as a function of Distance 

        plot(x,T(:, 200),'r','linewidth', 3) 

        axis([-0.05e-6 1.05e-6 -10 310]); 

        title('Numerical Solution for 1D Temperature Profile after 500 ps using CNS scheme','fontweight', 

'bold','FontSize',12) 

        xlabel('Distance (m)','fontweight','bold','FontSize',12) 

        ylabel('Temperature (K)','fontweight', 'bold','FontSize',12) 

         

% Define function for LU factorization 

function [e,f]=tridiagLU(a,b,c) 



n=length(a); 

e=zeros(n,1); 

f=e; 

 

 

e(1)=b(1); 

f(1)=c(1)/b(1); 

    for i=2:n 

        e(i)=b(i)-a(i)*f(i-1); 

        f(i)=c(i)/e(i); 

    end 

end 

 

 

% Define function for solving Tridiagonal system of equations 

function D=tridiagLUsolve(d,a,e,f,D) 

n=length(d); 

 

    if nargin<5 

        D=zeros(n,1); 

    end 

 

 

    D(1)=d(1)/e(1); 

 

    for i=2:n 

        D(i)=(d(i)-a(i)*D(i-1))/e(i); 

    end 

 

    for i=n-1:-1:1 

        D(i)=D(i)-f(i)*D(i+1); 

    end 

end 



 

Results: 

 

 

 

 

 

  

 


