Heat Equation

Heat equation governs the temperature distribution in an object. According to the second law of
thermodynamics, if two identical bodies are brought into thermal contact and one is hotter than the
other, then heat must flow from hotter body to the colder one at a rate proportional to the
temperature difference of the two bodies. Therefore, in a metal rod with non-uniform temperature,
heat (thermal energy) is transferred from regions of higher temperature to regions of lower
temperature. Consider a uniform rod of length L with non-uniform temperature lying on the x-axis
from x = 0 to x = L. Assume that the lateral surface of the rod is perfectly insulated, and heat can
enter or leave the rod through either of the rod ends and thereby creating a 1D temperature
distribution.
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Fig. 1: A rectangular metallic rod with insulated lateral surface and nonuniform heat distribution along length.

Consider an arbitrary thin slice of the rod of width Ax, between x and x+ Ax. The slice is so thin
that the temperature throughout the slice is T (X, t). The time heat energy needs to transit through
the tiny slice is At. The Heat (or thermal) energy of a body with uniform properties is defined as:
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Where, c(x) is the specific heat of the material, defined as the amount of heat energy that it takes
to raise one unit of mass of the material by one unit of temperature [c(x) > 0]. The specific heat
may not be uniform throughout the bar and in practice the specific heat depends upon the
temperature. However, this will generally only be an issue for large temperature differences. T(x,
t) is body temperature at any point x and any time t, m is the body mass. p(x) is the mass density
which is the mass per unit volume of the material. The mass density may not be uniform throughout
the rod.

Let S(x, t) be the heat energy generated per unit volume at location x, and time t. Then, the total
energy generated inside the thin slice is given by:
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Now let, @ (x, t) be the heat flux that is the amount of thermal energy that flows to the right per
unit surface area per unit time. The “flows to the right” bit simply tell us that if ¢ (x, t) > 0 for
some x and t then the heat is flowing to the right at that point and time. Likewise, if ¢ (x,t) <O
then the heat will be flowing to the left at that point and time.

According to the law of conservation of energy, the time rate of change of the heat stored at a point
on the rod is equal to the net flow of heat into that point.

Change of heat +  Total heat energy = Heat in from left - Heat out from
energy of the generated inside boundary right boundary
segment in time the segment
At

c(x) p(x) AAx[T(x, t + At) — T(x,t)] + A Ax S(x,t) At
=AMt (x,t) —AAt (X + AX,t) wov e e e e et (3)

Dividing both sides by A Ax At, equation (3) becomes:
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The above equation contains two unknown functions T and ¢, both of which are function of both
time and space. According to Fourier’s law of heat transfer, rate of heat transfer is proportional to
negative temperature gradient.
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Where k(x) is the thermal conductivity of the material being studied and measures the ability of
the material to conduct heat energy. Thermal conductivity can vary with the location of the rod as
well as the temperature. But for small change in total temperature (less than 10 degree), the thermal
conductivity can be treated as temperature independent. Now applying Fourier law and then
rearranging equation (4) we have,
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Now taking the limit At, Ax — 0 equation (6) becomes:
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Now assume that the material in the rod is uniform in nature and thus the thermal properties
(specific heat and thermal conductivity) and mass density all are constants.

c(x) =c; p(x) =p;and k(x) =k



The heat equation then takes the form:

oT 0°T

The above equation can further be simplified by defining the thermophysical term: thermal
diffusivity to be

k
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The heat equation then takes the form:
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This is 1D form of heat equation. We can get the 2D and 3D version of heat equation by using
Laplacian operator to the first term in right hand side of equation (9)
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Tow-Temperature Model

The Two Temperature Model (TTM) or Parabolic Two Step (PTS) model is given by:
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Where,

C, : Heat capacity of electrons

G : Heat capacity of lattice

g : Electron-phonon coupling factor
K, : Thermal conductivity
S(x,t) Laser source term, heat energy generated per unit volume per unit time.

The electron-phonon coupling factor and the lattice heat capacity are assumed to be constant. The
electron heat capacity is a strong function of the electron temperature and thermal conductivity is
obtained from electron and lattice temperature and equilibrium electron thermal conductivity
measured at room temperature.
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Where, k is the equilibrium electron thermal conductivity measured at room temperature. The laser
source term has an exponential decay in space to account for absorption in a nontransparent media,
and a Gaussian shape in time. Neglecting the temperature dependence of the optical properties a
reasonable approximation of the source term is given as.

SOt = (L= R) L exp [=E = 2.77(5)2] oo (14)
tpd d tp
Where,
R : Reflectivity of the material
J : Laser fluence
d : Radiation penetration depth
ty Pulse width

Here R and a are material properties and J and t,, are laser parameters.

Numerical Solution of 1D Heat Equation using CNS with Thermal Insulation
Boundary Condition:

A 1-D PDE includes a function u(x,t) that depends on time t and one spatial variable x. The
MATLAB PDE solver pdepe solves systems of 1-D parabolic and elliptic PDEs of the form:
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At the initial time t = t,, for all x, the solution components satisfy initial conditions of the form:
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At the boundary x = a or x = b, for all t, the solution components satisfy boundary conditions of
the form:

p(x, t,u) +q(x, t)f (x, t, u,Z—Z) =0 it it et et e e e e e e e e e e s e e s e e e e (10)

The boundary conditions are expressed in terms of the flux f. q(x,t) is a diagonal matrix with
elements that are either zero or never zero.

In our case at x = 0, the equation (10) takes the form
pl+ql*f=0;

pl+qls k2=0

Thereforepl=0and gl =1

And at the right boundary (at x =L)



pr+qr*k%%:Q
Thereforepr=0andqr=1

pl and gl are the coefficients for the left boundary, while pr and qr are the coefficients for the right
boundary.

MATLAB CODE for Heat Diffusion Model of Nb:
function pdex4

m = 0;

x = linspace (0,400E-9,800);

t = linspace(-100E-15,935E-12,1403);

sol = pdepe (m, @pdexdpde, @pdex4dic, @pdexdbc, x,t) ;

u = sol(:,:,1);

% A surface plot is often a good way to study a solution.
surf (x,t,u, 'EdgeColor', 'none')
title('Temperature profile for 1D Heat equation')
xlabel ('Distance x (m)")

ylabel ('Time t (sec)'")

zlabel ('Temperature (K) ")

%$%%Plot surface temperature vs. time

figure, plot(t,u(:,1), 'linewidth',2)
title('Surface Temperature Profile')

xlabel ('"Time, t (sec)')

ylabel ('Temperature (K)")

$%%Plot of temperature along the length at intermediate
time

figure, plot(x,u(l5,:),'linewidth',2)
title('Temperature along the length at time t = 10 ps')
xlabel ('Distance, x (m)")

ylabel ('Temperature (K) ")

xlswrite ('C:\Users\obidu\OneDrive\Desktop\matlab
example\testl.xls',t(:));

xlswrite ('C:\Users\obidu\OneDrive\Desktop\matlab
example\testl.xls',u, 'bl1:02000");

function [c,f,s] = pdexdpde (x,t,u,DuDx)



c = 2.3E06;
f = 55*DuDx;
5] ((1-0.9) *(3.98E13*7.4E7)) *exp (= (x*7.4E7)-(2.77* (£t/100E-

15)7°2));

function u0 = pdex4dic (x)
u0 = 300;

function [pl,ql,pr,qr] = pdexdbc(xl,ul,xr,ur,t)
pl = 0;

aql = 1;
pr = 0;
aqr = 1;
Results:
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(b) Temperature as function of distance
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1. Fitting Model
Algorithm for fitting of thermoreflectance data with 1D Heat Model:

1. Define a global variable k and it’s range from kjy, 10 Kpign. (kjon, = 40wm™1K 1,

knigh = 65wm~1K~1) and initialize for root mean square error (E_test=100 and E_R=0)

Read optimized experimental matrix, Uexp= AR/R from origin/Excel.

Discretize time and space variables.

Find theoretical matrix u using Heat diffusion model

Optimize theoretical matrix u dividing u by Umax to get Uopt.

Determine MF by averaging the ratios of Uexp (t) to the Uopt (t,1) at time 100, 200,300,

400, 500, 600, 700, 800 and 900 ps

7. Set limits for Multiplication factors MF,;,,s = MF + 0.5, MFp;,s = MF — 0.5, and
initialize for MF (MF_initial=MF_minus — 0.01 and MF_test = MF_minus)

8. Discretize MF and allocate memory for new matrix Amrand error, E_R.

9. Multiply Uopt by MF to get Awmr.

10. Calculate Root Mean Square Error (RMSE) by using the formula RMSE =

\/Z?_an(AModelAExp)z

ok~ wN

(ny—ny)
11. Evaluate RMSE. If RMSE < &, go to step 16, else go to step 12. % and finish program
here. Display Multiplication factor and Error.
(i) %set MF=MF+0.01 and go to step 8.
12. Evaluate MF. If MF = MF,,,,, 9o to step 13, else go to step 14.
(ii) Else set MF=MF+0.01 and go to step 8.
13. Evaluate k.
(i) If k < kpign, set k = k + 0.1 and go to step 4
(i1) Else print the message “The experimental data do not fit with the model for the
given thermal conductivity range and error bar” and finish the program.
14. Evaluate RMSE.
Q) If RMSE = Eipsty S€t Erost = Etest + 0 and Mypgr = Mips: + 0.
(i) Else set E;es; = RMSE and M,z = M.
15. Accumulate values of E;.s; and My, Set MF = MF + 0.01, and go to step 9.
16. Accumulate final values of parameters k, MF, RMSE and Ayr.
17. Calculate coefficient of determination/R? measure.
18. Plot both Uexp and Amr 0on a single graph.
19. Display values of k, MF, RMSE and R? and finish program.



Flowchart for fitting of thermoreflectance data with 1D Heat Model:
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Goodness of Fit (GoF):

N

The goodness of fit is measured by calculating both the root-mean-square error (RMSE) and the
coefficient of determination, (R-squared measure). These parameters are calculated by using the

following formulas:

n
Zizznl(AModel_AExp)z

RMSE =

(n1—ny)
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Fitting deviation measured by coefficient of determination can be calculated with two sums of

squares formulas:

The total sum of squares: SS; = ¥.;(Aexp (D) — Aexp)2

1

(nz—nq)

n;
i=n1

Where, Agyp = >

Aexp (L)

The residual sum of squares: SS, = Y;(Aexp () — Amoger (1))?

The R-squared measure is the calculated as:

RP=1-2r

e e (12)

The ideal value for R? is unity. For baseline model R? = 0. Negative R? is obtained for models

which have worse predictions than this baseline.



MATLAB CODE for Fitting Model:

% Program for fitting Experimental thermoreflectance with 1D
Heat Model generated by PDEPE function

clear

clc

close all

% Define global variable
global k,

% Initialization
eps = 0.02;

k high=65;

k low=40;

E test=100;

E R=0;

% Read experimental thermoreflectance data from HDD
exp=readmatrix ('Exp Data 7 400nm');

_exp=U exp(151:end);

> G

Discretazition
= linspace(0,400E-9,800)
= linspace (-100E-15,935E-12,1403);

o\°

(-

% Varies the value of thermal conductivity to obtain best fit
for k=k low:0.1:k high

% Heat Model solution using PDEPE function

m = 0;

sol = depe(m @pdexdpde, @pdexdic, @pdexdbc, x,t) ;
u = 1(: 1);

% Optimization of temperature profile
u max=max (u(:,1));

U opt=u(:,1)./u max;

A model=U opt (151l:end);

% Calculation of multiplication factor

MF= (U exp (151) /U opt(151,1)+U exp(301)/U opt(301,1)+U exp (451)/U
_opt (451,1)+U exp(601) /U opt(601,1)+U exp(751) /U opt(751,1)+U ex
p(901) /U opt(901,1)+U exp(1051) /U opt (1051,1)+U exp(1201) /U opt (
1201,1)+U_exp (1351) /U opt (1351,1))/9;



MF plus=MF+0.5;

MF minus=MF-0.5;

MF initial=MF minus-0.01;
M test=MF minus;

MF vec=MF minus:0.01:MF plus;
A MF=zeros (length(t)-150,1);
E R=zeros(l,length (MF _vec));
% Varies the value of multiplication factor to obtain best fit
for i=1l:length (MF vec) -1

M=MF initial+i*0.01;

A MF =A model.*M;

Calculation of Error

R =A MF -A exp;

2 =A R."2;

~R2 =sum (A R2);
_Ravg=E R2/ (length(t)-150);
R =sqgrt (E_Ravgq);

B o

LIRS,

el ca i cal

if E R>=E test
E test=E test+0;
M test=M test+0;
else
E test=E R;
M test=M;
end

end

% Accumulate final values
k final=k;

A final=A model.*M test;
T=t.*lel2;

% Calculation of R-square Measure
A_eprar=sum(U_exp(151:end)/(length(t)—l50));
A SS=U _exp-A expbar;

A SS2=A SS5.72;

SS T=sum (A SS2(151:end));

SS model=(U exp(1l51l:end)-A final)."2;

SS _R=sum (SS_model) ;

R 2=1-(SS R/SS T);
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% Plotting best fit result and displaying vital parameters

plot(T,U exp, 'b',T(151:end),A final, 'r',"'linewidth', 2)

axis([-50 1000 -0.1 1.11);

title ('Thermoreflectance data fitted with Heat Diffusion
Model', 'fontweight', 'bold', 'FontSize',12)

xlabel ('Time, t (ps)', 'fontweight', 'bold', 'FontSize',12)

ylabel ('Transient Response (optimized)', 'fontweight',
'bold', '"FontSize',12)

legend ({ 'Experimental curve', '"Heat Diffusion
Model'}, 'Location', "northeast', 'FontSize',10)

legend ('boxoff'")

dim=[0.33, 0.60, 0.1, 0.1];
str=sprintf ('The root-mean-square error for best fit is:
%.5f'", E test);

annotation('textbox',dim, 'String',str, 'FitRoxToText', 'on', 'EdgeC
olor', "'none');

dim=[0.33, 0.55, 0.1, 0.1];
str=sprintf ('The R-Square Measure for best fit is:
.5f', R 2);

o\°

annotation ('textbox',dim, 'String',str, 'FitBoxToText', 'on', 'EdgeC
olor', 'none');

dim=[0.33, 0.65, 0.1, 0.1];
str=sprintf ('Best fit obtained for k = $.2f Wm-1K-
1",k final);

annotation('textbox',dim, 'String',str, 'FitRoxToText', 'on', 'EdgeC
olor', "'none');

Kp = [' Best fit obtained for thermal conductivity: k
",num2str(k final),' Wm-1K-1"];
disp (Kp)
Mp = [' Multiplication factor for fitting is: ME =
",numZstr (M test),];
disp (Mp)
E = [' The root-mean-square error is: RMSE =

",numZstr (E _test),];
disp (E)



R square= [' The determination coefficient R-Square
Measure 1is R2= ', num2str(R 2),1];
disp (R _square)

disp ('The experimental data do not fit with the model for the

given thermal conductivity range and error bar')
end

% PDEPE function

function [c,f,s] = pdexdpde (x,t,u,DuDx)

c = 2.3E6;

k=52;

f = k*DuDx;

s = ((1-0.9)*5/(100E-15*%15.3E-9) ) *exp (- (x/15.3E-9) -
(

2.77* (£t/100E-15)"2));

% Initial condition

function u0 = pdex4ic(x)
ul0 = 0;
end

¢}

% Boundary condition

function [pl,gl,pr,gr] = pdexdbc(xl,ul,xr,ur,t)
pl = 0;

ql = 1;

pr = 0;

qr = 1;

end

Result of Fitting Model:

Command Window

Best fit obtained for thermal conductivity: k =55 wWm-1E-1
Multiplication factor for fitting is: MF = 2.691
The root-mean-sgquare error is: BMSE = 0.007%087

The determination coefficient E-Sguare Measure is E2= (0.55245
fx >>



Thermoreflectance data fitted with Heat Diffusion Model
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Fig: The experimental data was taken from the 800 nm Nb film
deposited on Cu at 6709 C and is averaging over 5 scans with time
resolution 0.667 ps. No filtering and smoothing are used here.



